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Abstract

The goal of this project is to introduce basic notions of Weil divisor, Cartier divisors
Picard group, sheaf cohomology and to study links between these concepts.



2 CONTENTS

Introduction

This project is divided in two parts. In the first one, we define sheaves of modules
(as the sheaves extend the concept of abelian groups, sheaves of modules extend the
notion of modules) and present some of their basic properties. Then, we speak about
sheaves of modules on schemes and about coherent and quasi-coherent sheaves. The
goal of the end of the first part is to present the notions of Weil and Cartier divisors
and to show the link between them. Finally, we define the Picard group of a scheme
and present the link with divisors.
The second chapter is about cohomology. First, we present the standard definitions
of homological algebra which allow us to give the first definition of sheaf cohomology.
Then, we present another version of cohomology: the Čech cohomology. This coho-
mology theory is more suitable for explicit calculations and coincides with the other
one in many cases. Throughout this chapter, we illustrate these notions with various
examples. Finally, we show how the Picard group can be seen as a cohomoloy group.



Chapter 1

Sheaves of modules and divisors

In this section, the term “sheaf” will always mean a sheaf of abelian groups and,
unless specified otherwise, the underlying topological space of the sheaf is denoted
X. I will use many of results etablished in [Gug10]. Most of these results can be
easily updated to deal with OX -modules instead of sheaves and modules instead of
abelian groups and I will not mention these modifications explicitely (except for few
cases, as the sheafification process).

1.1 Sheaves of modules

1.1.1 Definitions and first properties

Definition 1.1.1 (Presheaf of modules)
Let (X,OX) a ringed space. A presheaf of OX -modules is a presheaf of abelian groups
F such that F (U) is a OX(U)-module for all open set U of X and such that the
restriction maps of F are compatible with the module structure, that is:

(a · s)
∣∣
V

= a
∣∣
V
· s
∣∣
V
, ∀V ⊂ U open,∀a ∈ OX(U), ∀s ∈ F (U).

Definition 1.1.2 (Sheaf of modules)
Let (X,OX) a ringed space. A sheaf of OX -modules F , or an OX -module, is a
presheaf of OX-modules such that F is a sheaf.

Examples 1.1.3 (i) Each sheaf of abelian groups F is an Z-module, where Z is
viewed as the constant sheaf.

(ii) On a ringed space OX is an OX -module (with the ring multiplication as action).

Proposition 1.1.4
Let F be an OX-module and x ∈ X. Then Fx is an OX,x-module.

Proof. Let [V, s] ∈ Fx and [W,a] ∈ OX,x. We set

[W,a] · [V, s] =
[
W ∩ V, a

∣∣
W∩V · s

∣∣
W∩V

]
.

It is easy to see that this definition does not depend on the choice of the represen-
tatives (W,a) and (V, s). Since each F (U) is an OX(U)-module, this action makes
Fx an OX,x-module.

Remark 1.1.5 (Stalk commutes with the action)
Let a ∈ OX(U), s ∈ F (U) and x ∈ X. The way we define the action of OX,x on Fx

implies directly that (a · s)x = ax · sx.

3



4 CHAPTER 1. SHEAVES OF MODULES AND DIVISORS

I recall here the process of sheafification which turns a presheaf into a sheaf.

Proposition 1.1.6
Let F be a presheaf of abelian groups on a topological space X. For each open set
U of X, consider the set F+(U) of functions f : U −→

∐
x∈U Fx which satisfy the

two conditions:

(?) For all x ∈ U , f(x) ∈ Fx.

(??) For all x ∈ U , there exists an open neighbourhood Vx of x contained in U and
an element t ∈ F (Vx) such that for all y ∈ Vx the image ty of t in Fy is equal
to f(y).

Then F+ is a sheaf. Furthermore, if we define θ : F −→ F+ as

θU : F (U) // F+(U)

g � // θU (g) : U //
∐
y∈U Fy

x � // gx,

then θ is a morphism of presheaves and (F+, θ) satisfy the following universal prop-
erty: for every sheaf G and every morphism of presheaves α : F −→ G , there exists
a unique morphism β such that the following diagram commutes.

F

θ
��

α // G

F+
β

==

Proof. See 2.1.26 of [Gug10].

Definition 1.1.7 (Morphism of OX -modules)
Let F and G denote two OX-modules. A natural transformation α : F −→ G is a
morphism of OX -modules if each component αU : F (U) −→ G (U) is a morphism
of OX(U)-modules. We denote by Hom(F ,G ) the set of morphisms of OX-modules
from F to G .

Remark 1.1.8
It is easy to see that the set Hom(F ,G ) defined above endowed with the addition
is an abelian group.

Notation 1.1.9
We denote by M od(OX) the category of OX -modules.

Definition 1.1.10 (Kernel, image and cokernel)
The kernel, the image and the cokernel, which are denoted respectively ker, im and
coker, of a morphism of OX-modules are defined in the same way that for a morphism
of sheaves.

Proposition 1.1.11
Let F and G denote two OX-modules and let α : F −→ G be a morphism of OX-
modules. Then the sheaf kerα is an OX-module. Furthermore, this is the kernel of
α in M od(OX).
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Proof. Let U be an open set of X. Since αU is a morphism of OX(U)-modules, then
(kerα)(U) = kerαU is an OX(U)-module. And since (kerα)(U) ⊂ F (U), then the
restriction maps on kerα are compatible with the module structure. It is clear that
the inclusion map i : kerα −→ F is a morphism of OX -module. Let F ′ be an
OX -module and α′ : F ′ −→ F a morphism such that αα′ = 0:

F ′

α′

""
β
��

kerα �
�

i
// F

α //
0
// G

Then the morphism β : F ′ −→ kerα defined by βU = α′U is a morphism of OX -
module which satisfy i β = α′ and is uniquely so. Hence, kerα is the kernel of α.

Proposition 1.1.12
Let F be a presheaf of OX-modules. Then, the sheafification F+ of F is a OX-
module and θ is a morphism of presheaves of OX-modules. Furthermore, in the
universal property, if G is an OX-module and α is a morphism of presheaves of
OX-modules, then the morphism of sheaves β is a morphism of OX-modules. In par-
ticular, the sheafification of a morphism of presheaves of OX-modules is a morphism
of OX-modules.

Proof. Let U be an open set of X. We define the map

· : OX(U)×F+(U) // F+(U)

(s, f) � // s · f : U //
⋃
y∈U Fy

x � // sx · f(x),

where we use the action defined in Proposition 1.1.4. The condition (∗) is imme-
diately verified. For the second one, we know that there exists for each x ∈ U a
neighbourhood Vx contained in U and an element t ∈ F (Vx) such that f(y) = ty for
each y ∈ Vx. Then we use the element s

∣∣
Vx
· t and the Remark 1.1.5. Now, it is easy

to see that this map turn F+(U) into a OX(U)-module. Furthermore, if V ⊂ U ,
x ∈ V , s ∈ OX(U) and f ∈ F+(U), then(

s
∣∣
V
· f
∣∣
V

)(x) =
(
s
∣∣
V

)
x
· f(x) = sx · f(x) = (s · f)

∣∣
V

(x).

Hence, the action is compatible with the restriction maps and F+ is an OX -module,
as required. A direct calculation shows that θU is a morphism of OX(U)-modules.
Reasoning like in the proof of Proposition 1.1.6 show that the induced morphism β
is a morphism of OX -modules.

Proposition 1.1.13
In M od(OX), monomorphisms are exactly injective morphisms (i.e. morphisms α
such that kerα is trivial).

Proposition 1.1.14
Let F and G denote two OX-modules and let α : F −→ G be a morphism of OX-
modules. Then the sheaf imα is an OX-module and is the image of α in M od(OX).
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Proof. In this proof, we made an exception and use imα for the presheaf image and
(imα)+ for the image of α. For every open set U of X, α

(
F (U)

)
has a natural

structure of OX(U)-module. Hence, imα is a presheaf of OX -modules. The previous
Proposition shows that (imα)+ is an OX -module.
We have the following situation:

F
α // imα

i //

θ
��

G

(imα)+

β

;;

Since i is a monomorphism, then so is β (Proposition 2.1.36 of [Gug10]). We want
to show that

(
(imα)+, β) satisfy the universal property of the image: for every

OX -module F ′, for every morphism γ : F −→ F ′ and every injective morphism
δ : F ′ −→ G such that α = δγ, there exists a unique morphism ε : (imα)+ −→ F ′

making the following diagram commute:

F

α

))

θα

##

γ

��

G

(imα)+

β
;;

ε

��
F ′

δ

MM

Suppose that γ and δ are as above. For all t ∈ (imα)U = αU
(
F (U)

)
, let s ∈

F (U) be a preimage of t under αU and set ηU (t) = γU (s). Since δ is injective, the
definition of ηU (t) does not depend on the choice of the preimage. This definition
gives a morphism η : imα −→ F ′ of presheaves of OX -modules and the universal
property gives the desired morphism ε. We have to check that the morphism ε
makes the diagram commute. We have εθα = ηα = γ. For the second triangle, we
get δεθ = δη = i. Since βθ = i, the universal property implies δε = i. If ε′ is another
morphism which makes the diagram commute, then

δθε′ = i = δθε⇒ θε′ = θε⇒ ε′ = ε,

as required.

Proposition 1.1.15
Let α : F −→ G be a morphism of OX-modules. Then the cokernel of α is an
OX-module and the cokernel of α in M od(OX).

Proof. In this proof, we made an exception and use cokerα for the presheaf coker
and (cokerα)+ for the cokernel of α. Using Proposition 1.1.12, it is easy to see that
(cokerα)+ has a natural structure of OX -module. If β : G −→ G ′ is a morphism
of OX -modules such that βα = 0, then the universal property of the cokernel of
modules induces the components of a morphism γ and the universal property of the
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sheafification induces the required morphism δ. The situation is the following:

F
α //
0
// G

π //

β

**

cokerα
θ //

γ

&&

(cokerα)+

δ

��
G ′

So far, we have seen that:

(i) For all F ,G ∈ M od(OX), Hom(F ,G ) as the structure of an abelian group
and the composition law is linear.

(ii) Every morphism in M od(OX) has a kernel and a cokernel.

(iii) Finite direct sums exist.

And it is easy to check the following:

(i) Every monomorphism is the kernel of its cokernel.

(ii) Every epimorphism is the cokernel of its kernel.

(iii) Each morphism α : F −→ G can be factored into

F
α //

!! !!

G

F ′
. �

>>

Therefore, we have the following result:

Proposition 1.1.16
The category M od(OX) is an abelian category.

Definition 1.1.17 (OX -submodule)
Let F be an OX-module. A subsheaf F ′ of F is a subsheaf of OX -modules, or a
OX -submodule, of F if the two following conditions are satisfied:

(i) F ′(U) is a submodule of F (U) for each open set U of X;

(ii) the restriction maps of F ′ are induced by those on F .

Definition 1.1.18 (Quotient sheaf)
Let F be an OX-module and F ′ an OX-submodule of F . The quotient sheaf F/F ′

is defined as for sheaves: this is the sheaf associated to the presheaf which maps U
to F (U)/F ′(U).

The following proposition is an immediate consequence of the Proposition 1.1.12.

Proposition 1.1.19
Let F be an OX-module and F ′ an OX-submodule of F . Then the quotient sheaf
F/F ′ is an OX-module.
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Definition 1.1.20 (Exact sequence of OX -modules)
A sequence of OX-modules is exact if it is exact as a sequence of sheaves of abelian
groups.

Proposition 1.1.21
Let F be an OX-module and U an open set of X. Then F

∣∣
U
is an OX

∣∣
U
-module.

Definition 1.1.22 (Sheaf hom)
Let F and G be two OX-modules. Then the presheaf U 7−→ HomOX |U

(
F
∣∣
U
,G
∣∣
U

)
is denoted H omOX (F ,G ). It is a sheaf and is called the sheaf hom.

Proposition 1.1.23
For two OX-modules F and G , the sheaf hom H omOX (F ,G ) is an OX-module.

Definition 1.1.24 (Tensor product of OX -modules)
Let F and G be two OX modules. We define the tensor product of F and G , denoted
F⊗OXG or F⊗G if no confusion can arise, to be the sheaf associated to the presheaf
U 7−→ F (U)⊗OX(U) G (U).

Proposition 1.1.25
The tensor product of two OX-modules is an OX-module.

Example 1.1.26
Let F be an OX -module. Then F ⊗OX OX ∼= F . Indeed, for every open set U we
have F (U)⊗OX(U) OX(U) ∼= F (U).

Proposition 1.1.27
Let F and G be two OX-modules. Then, for all x ∈ X, we have(

F ⊗OX G
)
x
∼= Fx ⊗OX,x Gx,

as OX,x-modules.

Proof. Fix x ∈ X. We have the following situation

Fx × Gx

τ

��

ϕ // lim−→x∈U F (U)⊗OX(U) G (U)

ψ̃

qqFx ⊗OX,x Gx

ϕ̃

33

where:

• ϕ
(
[V, s], [W, t]

)
=
[
V ∩W, s

∣∣
V ∩W ⊗ t

∣∣
V ∩W

]
;

• ϕ̃ is induced by the universal property of the tensor product.

• ψ̃
(
(s× t)x

)
= sx ⊗ tx. To get this map, first define

ψU : F (U)× G (U) −→ Fx ⊗OX,x Gx

by ψU (s, t) = sx⊗ tx. Then use the universal property of tensor product to get
ψ̃U and finally use the universal property of the direct limit to get the desired
morphism ψ̃.

Since these maps are mutual inverse and stalks commutes with sheafification, we get
the required result.
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Definition 1.1.28 (Free OX -module)
An OX-module is free if it is isomorphic to a direct sum of copies of OX .

Definition 1.1.29 (Locally free OX -module)
An OX-module F is locally free if there exists an open covering {Ui}i∈I of X such
that each F

∣∣
Ui

is free (as an OX
∣∣
Ui
-module).

Definition 1.1.30
In the above proposition, the rank of an open set Ui is the rank of F

∣∣
Ui

as an OX
∣∣
Ui
-

module.

Proposition 1.1.31
Let F be an OX-module and U an open set such that F

∣∣
U

is free of rank n (with
n ∈ N0 ∪ {∞}). Then for all x ∈ U , Fx is a free OX,x-module of rank n.

Proof. We recall that for any sheaf G , any open set U and any x ∈ U , we have(
G
∣∣
U

)
x
∼= Gx. Furthermore, it is easy to see that taking stalks commute with direct

sum.

Proposition 1.1.32
Let F be a locally free OX-module over a connected topological space X. Then the
rank is the same everywhere.

Proof. Consider the function f : X −→ N ∪ {∞} which associate to each x ∈ X the
rank of Fx as an OX,x-module. The last Proposition implies that this function is
locally constant. Since X is connected, f is constant.

Definition 1.1.33 (Rank of a locally free OX -module)
Let F be a locally free OX-module such that the rank of F on each open set of the
open covering is the same. Then, the rank of F is the rank of F on some open set.
Remark that Proposition 1.1.31 implies that the rank does not depend on the choice
of the covering.

Definition 1.1.34 (Invertible sheaf)
A locally free OX-module of rank 1 is called an invertible sheaf (or invertible OX -
module).

Remark 1.1.35
We will see later (cf. Section 1.2.3) the reason for the choice of the term “invertible”.

Definition 1.1.36
A sheaf of ideals on X is a sheaf of modules G which is a subsheaf of OX . That is,
G (U) is an ideal of OX(U).

1.1.2 Direct and inverse images

Let f : (X,OX) −→ (Y,OY ) be a morphism of ringed spaces1. If F is an OX -
module, then f∗F is an f∗OX -module by the evident action. On the other hand, we
can put a structure of OY -module on f∗F :

OY (V )×
(
f∗F

)
(V ) −→

(
f∗F

)
(V )

(a, s) 7−→ a · s = f ]V (a) · s.
1We recall that a morphism of ringed spaces f : (X,OX) −→ (Y,OY ) is a pair (f, f ]) where

f : X −→ Y is a continuous map and f ] : OY −→ f∗OX is a morphism of sheaves.
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If W ⊂ V , we have

(a · s)
∣∣
W

= f ]V (a)
∣∣
W
· s
∣∣
W

= f ]W
(
a
∣∣
W

)
· s
∣∣
W

= a
∣∣
W
· s
∣∣
W
.

Therefore, the action is compatible with the restriction maps.

Definition 1.1.37 (Direct image)
Let f and F as above. The OY -module f∗F is called the direct image of F by
(f, f ]).

Remark 1.1.38
If α : F −→ G is a morphism ofOX -modules, then f∗α : f∗F −→ f∗G is a morphism
of OY -modules. Hence, f∗ is a functor from M od(OX) to M od(OY )

Proposition 1.1.39
Let G be an OY -module and f : X −→ Y a continous map. Then f−1G is a f−1OY -
module.

Proof. For any open set U of X, we define the following action:

lim−→
f(U)⊂V

OY (V )× lim−→
f(U)⊂V

G (V ) −→ lim−→
f(U)⊂V

G (V )(
[V, a], [W, t]

)
7−→

[
V ∩W,a

∣∣
V ∩W · t

∣∣
V ∩W

]
.

Let f : (X,OX) −→ (Y,OY ) be a morphism of ringed spaces. Since f−1 and f∗
are adjoint functors, f ] leads to a morphism f] : f−1OY −→ OX which defines a a
structure of f−1OY -module on OX . Then we set

f∗G = f−1G ⊗f−1OY OX ,

which is an OX -module.

Definition 1.1.40
Let f : (X,OX) −→ (Y,OY ) be a morphism of ringed spaces and G an OY -module.
Then the OX-module f∗G defined above is called the inverse image of G by f .

Remark 1.1.41
Let U be an open subset of X and i : U �

� //X the inclusion. For a sheaf F
on X, we defined the restriction F

∣∣
U

as i−1(U) and if F is an OX -module, then
F
∣∣
U

is an OX
∣∣
U
-module. Now, we have the concept of inverse image, a map i :(

U,OX
∣∣
U

)
−→ (X,OX) and we can see that i∗F ∼= i−1F (as OX

∣∣
U
-modules).

But this is not necessarily the case when i is not an open immersion. For example,
considerX = SpecC[t], a ∈ C and the point Pa = 〈t−a〉 ∈ SpecC[t]. Let Y = SpecC
and i : (Y,OY ) −→ (X,OX), where i(0) = Pa. Then i−1OX ∼= OX,Pa ∼= C[t]〈x−a〉.
On the other hand, we have

i∗OX = i−1OX ⊗i−1OX OX ∼= C[t]〈t−a〉 ⊗C[t]〈t−a〉 C,

which is isomorphic to C.

Proposition 1.1.42
Let f and G as in the definition. Then for all x ∈ X we have

(f∗G )x ∼= Gf(x) ⊗OY,f(x) OX,x.
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Proof. Use Proposition 1.1.27 and Remark 2.1.54 of [Gug10].

Remark 1.1.43
If α : G −→ G ′ is a morphism of OX -modules, the functoriality of f−1 gives a
morphism f−1 : f−1G −→ f−1G ′ of f−1OY -modules. Then we get a morphism
of OX -modules α∗ : f∗G −→ f∗G ′. Hence, f∗ is a functor from M od(OY ) to
M od(OX).

1.1.2.1 Exacteness of direct and inverse image functors

Here, we discuss briefly the exacteness of the direct and inverse image functors.

Proposition 1.1.44
The inverse image functor is right-exact and the direct image functor is left-exact.

Proof. One can show that the functor f∗ is left adjoint to the functor f∗. Hence, f∗

is right-exact and f∗ is left-exact.

Remark 1.1.45
For the inverse image, one can check this directly: we know that f−1 is an exact
functor. Furthermore, the functor −⊗M is right-exact, for any moduleM for which
tensor product makes sense.

Proposition 1.1.46
In the case of closed/open immersions, we have the following stronger result:

(i) Let U be an open subset of X and i :
(
U,OX

∣∣
U

)
−→ (X,OX) be the inclusion

morphism. Then the functor i∗ is exact.

(ii) If f : (X,OX) −→ (Y,OY ) is a closed immersion, then f∗ is exact.

Proof. (i) Let F be an OX -module. Using last Proposition, we get (i∗F )x ∼= Fx.
The result follows from the fact that exacteness can be checked on the stalks.

(ii) We know already that f∗ is left-exact. We consider a surjective morphism
α : F −→ G of OX -modules and want to show that f∗α is surjective, which is
equivalent to (f∗α)y being surjective for all y ∈ Y . First, we remark that since
f(X) is closed in Y , then (f∗G )y = 0 for all y /∈ f(X). Now, let y = f(x).
Since f is a closed immersion, the set

{
f−1(V ) : V open neighbourhood of y

}
is cofinal in the set of open neighbourhood of x. This implies that Fx

∼= (f∗F )y
and Gx ∼= (f∗G )y. Therefore, we have the following commutating diagram

Fx

����

∼= // (f∗F )y

(f∗α)y
��

Gx
∼= // (f∗F )y

which implies that (f∗α)y is surjective, as required.
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1.1.3 Sheaves of modules on an affine scheme

Let R be a ring, (SpecR,OR) its spectrum and M be a R-module. We want to use
M to define a sheaf of OR-modules M̃ . To do this, we copy the construction of the
structure sheaf OR of SpecR. Let U be an open set of SpecR and set M̃(U) as the
set of all functions s : U −→

∐
p∈U Mp such that:

• s(p) ∈Mp for all p ∈ U .

• For all p ∈ U there exists an open neighbourhood V of p contained in U and
m ∈M , r ∈ R such that for each q ∈ V , r /∈ q and s(q) = m

r .

With the restriction as restriction maps, we get a sheaf. We define a structure of
OR(U)-module on M̃(U) as follows:

O(U)× M̃(U) −→ M̃(U)

(f, s) 7−→ f · s : p 7−→ f(p) · s(p).

As restriction of functions, the restriction maps are compatible with the module
structure.

Definition 1.1.47 (Sheaf associated to a module)
Let R be a ring, (SpecR,O) its spectrum and M be an R-module. The O-module M̃
defined above is called the sheaf associated to M on SpecR.

It is clear from the definitions that considering R as a module over itself then R̃
is just OR. Recall that for an element f ∈ R, we define D(f) = SpecR \ V(〈f〉).

The following two propositions give the main properties of the construction we
made.

Proposition 1.1.48
Let R be a ring, X = SpecR and M a R-module. Then:

(i) For each p ∈ X, we have M̃p
∼= Mp (as OX,p-modules).

(ii) For every f ∈ R, we have M̃
(
D(f)

) ∼= Mf (as Rf -modules).

(iii) In particular, M̃(SpecR) ∼= M .

Proof. See [Har77] II.5.

Proposition 1.1.49
Let R be a ring and X = SpecR. Let R −→ S be a homomorphism of rings and the
corresponding application f : SpecS −→ SpecR. Then:

(i) The map M 7−→ M̃ gives an exact, fully faithful functor from the category of
R-modules to M od(OX).

(ii) For any family of R-modules {Mi}, we have
(⊕

iMi

)∼ ∼= ⊕i M̃i.

(iii) Let M,N be a pair of R-modules, then (M ⊗R N)∼ ∼= M̃ ⊗OX Ñ .

(iv) If N is a S-module, then we have f∗(Ñ) ∼=
(
RN
)∼.

(v) For any R-module M , we have f∗(M̃) ∼=
(
M ⊗R S

)∼.
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Proof. (i) First we describe the functor on morphisms. Let ϕ : M −→ N be a
morphism of R-modules. For every open set U of X, we set:

ϕ̃U : M̃(U) −→ Ñ(U)

s 7−→ ϕ̃U (s) : p 7−→ ϕp

(
s(p)

)
,

where ϕp : Mp −→ Np is induced by ϕ.
The important fact is that, with the identification M̃p

∼= Mp, the morphism
between Mp and Np induced by ϕ is ϕp. Thus, a sequence of OX -modules

M̃
ϕ̃ //Ñ

ψ̃ //P̃ is exact at Ñ if and only if the sequence Mp
ϕp //Np

ψp //Pp

is exact at Np (Corollary 2.1.43 of [Gug10]). Since localization at a prime ideal
is an exact functor, then so is ∼.
Let M and N be two R-modules. We have an application ΦM,N which sends
a morphism ϕ to ϕ̃. On the other hand, given a morphism α : M̃ −→ Ñ , we
can use the point (iii) of the previous proposition, to get a morphism ΨM,N :
M −→ N . Then one can check that these applications are mutually inverses.

(ii) The universal property gives rise to a morphism α :
⊕

i M̃i −→
(⊕

iMi

)∼.
By looking at stalks and noting that

(⊕
iMi

)
p
∼=
⊕

i

(
Mi

)
p
(see Proposition

A.1.1) we see that α is an isomorphism.

(iii) Using the fact that (M ⊗R N)p ∼= Mp ⊗Rp Np for every prime ideal p, we can
construct a map

αU : M̃(U)× Ñ(U) −→ (M ⊗R N)∼(U)

(s, t) 7−→ αU (s, t) : q 7−→ s(q)⊗ t(q),

which gives a map α̃U : M̃(U) ⊗OX(U) Ñ(U) −→ (M ⊗R N)∼(U). Since the
induced map α̃q is an isomorphism for each q ∈ X and since stalks are preserved
by sheafification, we have the required isomorphism.

(iv) Follows from the definitions.

(v) For every q ∈ SpecS, consider the following canonical isomorphism:

τq :
(
f∗M̃

)
−→

(
M ⊗R S

)
q

For every open set V of SpecS, set

F (V ) =
(
f−1M̃

)
(V )⊗(f−1OR)(V ) OS(V ),

which means that F+ = f∗M̃ . Then, we define

α : F −→
(
M ⊗R S

)∼
αV (s) : V −→

∐
p∈V

(
M ⊗R S

)
q
, αV (s) : q 7−→ τq(sq).

One can check that the maps αV are well defined and that α is a morphism of
modules. Furthermore, we have αq = τq which implies that α is an isomorphism.
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1.1.4 Quasi-coherent and coherent sheaves

Definition 1.1.50 (Quasi-coherent sheaf, coherent sheaf)
Let (X,OX) be a scheme. An OX-module F is quasi-coherent if X can be covered
by open affine subsets Ui = SpecRi, such that for each i there exists an Ri-module
Mi with F

∣∣
Ui
∼= M̃i (as OSpecRi-modules). If in addition each Mi can be taken to

be a finitely generated Ri-module, then we say that F is coherent.

Example 1.1.51
Let (X,OX) be a scheme. Then there exists an open covering {Ui = SpecRi} of X
such that OX

∣∣
Ui
∼= R̃i. Therefore, OX is coherent.

Proposition 1.1.52
Let F be a quasi-coherent sheaf on an affine scheme (X = SpecR,OX). Then there
exists n ∈ N, f1, . . . , fn ∈ R and Rfi-modules Mi, such that:

(i) X is covered by the D(fi);

(ii) F
∣∣
D(fi)

∼= M̃i.

Proof. We know that {D(f) : f ∈ R} is a base for the topology on SpecR. Fur-
thermore, there exists an open covering {Ui}i∈I and a collection of Ri-modules Mi

such that Ui ∼= SpecRi and F
∣∣
Ui
∼= M̃i. Fix an Ui and f ∈ R such that D(f) ⊂ Ui.

The inclusion of D(f) in Ui induce a morphism of rings from OX
(
D(f)

)
= Rf to

OX(Ui) ∼= Ri. The last proposition and the Remark 1.1.41 implies that

F
∣∣
D(f)

∼=
(
Mi ⊗Ri Rf

)∼
.

Since X is compact, a finite number of such D(f) will be sufficient.

The proofs of the following propositions can be found in [Har77, II.5].

Proposition 1.1.53
Let X be a scheme and F an OX-module. Then F is quasi-coherent if and only if
for every open affine subset U = SpecR of X, there exists an R-module M such that
F
∣∣
U
∼= M̃ . If X is noetherian, then F is coherent if and only if the same is true,

with the extra condition that M is a finitely generated R-module.

Proposition 1.1.54
Let R be a ring and X = SpecR. The functor which associates to every R-module
M the quasi-coherent OX-module M̃ gives an equivalence of categories between the
category of R-modules and the category of quasi-coherent OX-modules. If R is noethe-
rian, then the same functor gives an equivalence between finitely generated R-modules
and coherent OX-modules.

Proposition 1.1.55
Let X be a scheme. The kernel, cokernel and image of any morphism of quasi-
coherent sheaves is also quasi-coherent.

1.1.5 Sheaves of modules on a projective scheme

Let R be a graded ring, (ProjR,O) its spectrum and M be a graded R-module. We
want to use M to define a sheaf of O-modules M̃ . We mimic here the construction
of the structure sheaf of ProjR. For an open set U of SpecR, we set M̃(U) as the
set of all functions s : U −→

∐
p∈U M(p) such that:

• s(p) ∈Mp for all p ∈ U .
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• For all p ∈ U there exists an open neighbourhood V of p contained in U and
m ∈M and r ∈ R two homogeneous elements of the same degree such that for
each q ∈ V , r /∈ q and s(q) = m

r .

With the restriction as restriction maps, we get a sheaf. We define a structure of
O(U)-module on M̃(U) as follows:

O(U)× M̃(U) −→ M̃(U)

(f, s) 7−→ f · s : p 7−→ f(p) · s(p),

which is well-defined since M is a graded R-module. As restriction of functions, the
restriction maps are compatible with the module structure.

Remark 1.1.56
When R is considered as a graded module over itself, R̃ is equal to the structure
sheaf of ProjR.

The following proposition is an updated version of Proposition 1.1.48.

Proposition 1.1.57
Let M be a graded R-module and let X = ProjR. We have the following properties:

(i) For every p ∈ X, M̃p
∼= M(p).

(ii) For any homogeneous element f ∈ R+, we have M̃
∣∣
D+(f)

∼=
(
M(f)

)∼, via the
isomorphism

(
D+(f),O

∣∣
D+(f)

) ∼= SpecR(f).

(iii) M̃ is a quasi-coherent OX-module. If R is noetherian and M is finitely gener-
ated, then M̃ is coherent.

Definition 1.1.58
Let R be a graded ring, X = ProjR and n ∈ Z. We define the OX-module OX(n)
by OX(n) := R(n)∼. If F is an OX-module, we denote by F (n) the OX-module
OX(n)⊗OX F by F (n). We call OX(1) the twisting sheaf of Serre.

Proposition 1.1.59
Let R be a graded ring, X = ProjR and suppose that R is generated by R1 as an
R0-algebra. Then:

(i) The sheaf OX(n) is an invertible sheaf for every n ∈ Z.

(ii) For any R-module M and any n ∈ Z, we have M̃(n) ∼= M̃(n). In particular,
OX(n+m) ∼= OX(n)⊗OX(m).

Proof. (i) It is sufficient to show that all the OX(n)
∣∣
D+(f)

are free OX
∣∣
D+(f)

-
modules of rank 1. Since R is generated by R1 as an R0-algebra, it is sufficient
to do this for elements of R1. So, let’s take f ∈ R1. The preceding proposition
implies that OX(n)

∣∣
D+(f)

∼= R̃(n)(f) as OSpecR(f)
-module. Since ∂f = 1, the

homomorphism of R(f)-modules

ϕ : R(f) −→ R(n)(f),
r

fm
7−→ fnr

fm

is well-defined and is an isomorphism. Applying the functor ˜ to both sides of
R(f)

∼= R(n)(f) gives R̃(n)(f)
∼= OSpecR(f)

, as required.
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(ii) Since the Proposition 1.1.49.(iii) is still true in the projective case with our
assumptions, we have

M̃(n) = M̃ ⊗OX OX(n) = M̃ ⊗OX R̃(n) ∼= ˜M ⊗R R(n) ∼=
A.1.9

M̃(n)

We will be especially interested in the case R = k[x0, . . . , xn] for some field k.
The next results will help us determine the global sections of OX(n).

Definition 1.1.60 (R-module associated to a OProjR-module)
Let R be a graded ring, X = ProjR and let F be a sheaf of OX-modules. We define
the graded R-module associated to a OProjR-module: we set

Γ∗(F ) =
⊕
n∈Z

Γ(X,F (n)),

as an abelian group. We want to define a structure of graded R-module on Γ∗(F ).
Consider r ∈ Rn and denote by fr ∈ Γ(X,OX(n)) the map which send q to r

1 for
every q in ProjR. If g ∈ F (m), then consider fr ⊗ g ∈ Γ(X,OX(n))⊗Γ(X,F (m))
and use the isomorphism Γ(X,OX(n))⊗ Γ(X,F (m)) ∼= F (m+ n). Thus, we have
a map

Rn × Γ(X,F (m)) −→ Γ(X,F (m+ n)).

With all these maps, Γ∗(F ) is a graded R-module.

Proposition 1.1.61
Let R be a ring, r ∈ N, S = R[x0, . . . , xr] and X = ProjS. Then S ∼= Γ∗(OX), as
graded modules.

Proof. See [Har77, Proposition II.5.13].

Corollary 1.1.62
Let R, X, r and S be as in the previous proposition. Let n ∈ N. Then the global
sections of OX(n) are the homogeneous polynomials of degree n in R[x0, . . . , xr].

Proof. We have:

Γ
(
X,OX(n)

) ∼= Γ
(
X, S̃(n)

) ∼=
1.1.59

Γ
(
X, S̃(n)

) ∼= Γ∗(S)n ∼=
1.1.61

Sn.

Remark 1.1.63
This corollary implies that the global sections of OX ∼= OX(0) are R. This shows that
if r 6= 0 and n 6= 0, then the invertible sheaf OX(n) constructed is not isomorphic to
OX (and this is also an example of the fact that the stalks do not determine entirely
a sheaf).
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1.2 Divisors

1.2.1 Weil divisors

In this section, we omit certain definitions and most of proofs. The details can be
found in II.6 of [Har77].

Definition 1.2.1 (Regular in codimension 1)
A scheme X is regular in codimension 1 if all the rings OX,x of dimension 1 are
regular.

Consider the following property:

(∗) X is a noetherian integral separated scheme which is regular in codimension one.

Unless specified otherwise, a scheme X satisfies (∗).
The following proposition can be easily proved.

Proposition 1.2.2
Let U be an open set of X. If Y is a prime divisor of X, then U ∩ Y is a prime
divisor of U . On the other hand, if Y is a prime divisor of U , then Y is a prime
divisor of X. This correspondance is a 1− 1 correspondance between prime divisors
of U and prime divisor of X which intersect U .

Proposition 1.2.3
Let (X,OX) satisfy (∗) and U be an open subset of X. Then U satisfies (∗).

Proof. The scheme U is noetherian because localization of a noetherian ring is
noetherian. Since an open set of an irreducible space is irreducible and since re-
ducibility can be checked on the stalks, then U is irreducible and reduced, wich is
equivalent to the integrality (see [Har77, II.3.1]). Since an open immersion is sepa-
rated and composition of separated morphisms is again separated, so is U . Finally,
since stalks are preserved by open immersion, then U is regular in codimension 1.

The following result will be used many times:

Proposition 1.2.4
Let X be a scheme. There is a bijection between integral closed subschemes of X and
irreducible closed subsets of X.

The definitions and Theorem 6.2A of [Har77] implies that every local ring OX,x
of dimension 1 is a discrete valuation ring.

Example 1.2.5
Let k be an algebraic closed field. Then Pnk satisfies (∗). Denote by R the ring
k[x0, . . . , xn]. Since R is noetherian, R+ has a finite set of generators f1, . . . , fs.
Thus, ProjR is covered by the set D+(fi) and since Pnk

∣∣
D+fi

∼= SpecR(fi) is noethe-
rian, then so is Pnk . For all p ∈ ProjR, we have (Pnk)p ∼= R(p), which is reduced.
Since ProjR is irreducible, then Pnk is integral (Proposition 3.1 of [Har77]). Since
ProjR is covered by open sets of the form R(xi), then Pnk is regular in codimension
one. Separatedness can be checked on the sets D+(xi).

Definition 1.2.6 (Prime divisor)
A prime divisor on X is a closed integral subscheme Y of codimension 1.
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Example 1.2.7
If X = Ank = Spec k[x1, . . . , xn], for some algebraically closed field, then X satisfies
(∗). Furthermore, a prime divisor of X is given by V(f) for an irreducible polyno-
mial f . Indeed, a prime divisor Y of X is given by Y = V(I) for some ideal I of
k[x1, . . . , xn]. Since Y is irreducible, I must be a prime ideal. The dimension of Y
implies that the height of I is 1 and and so I = 〈f〉 for some irreducible polynomial
(see I.1.8A of [Har77] and Theorem 47, section 19 of [Mat70]).

Definition 1.2.8 (Weil divisor)
Let DivX be the free abelian group with basis{

Y : Y prime divisor of X
}
.

Then, a Weil divisor D of X is an element D =
∑
niYi of DivX, where only finitely

many ni are non-zero.

Proposition 1.2.9
Let Z be an irreducible scheme. Then, the topological space Z contains a unique
point η such that {η} = Z. This point is called the generic point of Z.

Proof. If Z = SpecR is affine, take η as the nilradical of R (which is prime since
SpecR is irreducible). If Z is an arbitrary scheme, take an affine subset V . Then V
contains a generic point η and since V is dense in U , then η is a generic point of Z.
The unicity of the generic point comes from the irreducibility of Z.

Proposition 1.2.10
Let X be an integral scheme and let η be the generic point of X. Then, OX,η is a
field.

Proof. Let U be a non-empty affine subset of X (which must contain η). Since U is
irreducible U contains a unique generic point which must be η. On the other hand,
we have U ∼= SpecR for some integral domain R. Thus, η corresponds to the ideal
0 in R. Finally, we get

OX,η ∼=
(
OX
∣∣
U

)
η
∼= R0,

as required.

Definition 1.2.11 (Field of rational functions)
Let X be an integral scheme and let η be its generic point. The field OX,η is called
the field of rational functions of X. We denote it by K(X) (or K if it is clear from
the context).

Proposition 1.2.12
Let X be as above and U be an open affine subset of X. Then, the field of fractions
of OX(U) is equal to K.

Proof. The field of fractions of OX(U) is equal to the field of fractions of the ring R,
where R is such that U ∼= SpecR. Therefore

Frac
(
OX(U)

) ∼= Frac(R) = R0 = K.
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Proposition 1.2.13
Let X be an integral scheme and let U be an open set of X. For every x ∈ U , the
canonical map OX(U) −→ OX,x is injective.

Proof. Let U and x and suppose s ∈ OX(U) is such that sx = 0. This means that
s
∣∣
V

for some neighbourhood V of x. Now, consider any affine open set W ⊂ U . We
have the homomorphisms

OX(W ) �
� // FracOX(W ) ∼=

// OX,η.

Since η ∈ V ∩W , the image of s
∣∣
W

in OX,η will be zero, which implies that s
∣∣
W

= 0.
Covering U with affine subsets gives s = 0, as required.

Corollary 1.2.14
Let X be an integral scheme. The canonical map OX,x −→ OX,η is injective.

Proof. Let [U, s] ∈ OX,x such that sη = 0. Applying the previous result to the
morphism OX(U) −→ OX,η gives s = 0.

Lemma 1.2.15
Let R be a commutative ring and p ∈ SpecR. Then, there is a bijection between
SpecRp and the set of prime ideals of R which are contained in p.

Proof. Follows directly from the well-known result: if S be a multiplicative subset
of a commutative ring R, then there is a bijection between SpecS−1R and the set of
prime ideals of R which do not intersect S.

Proposition 1.2.16
Let X be an arbitrary scheme and x ∈ X a point. Then, there is a 1− 1 correspon-
dance between the following sets:

(i) The set of irreducible closed sets which contain x.

(ii) The set of points z ∈ X such that x ∈ {z} (we say that z specializes to x).

(iii) SpecOX,x.

Proof. (i)↔ (ii) Let Z be an irreducible closed subset which contains x and denote
by ηZ the generic point of Z. Then, x ∈ {ηZ} = Z. On the other hand, if
z ∈ X is such that x ∈ {z} =: Z, then z is the generic point of the integral
subscheme Z of X.

(ii)↔ (iii) First, suppose that z ∈ X is such that x ∈ {z} and choose an open
neighbourhood U of x. Since U is open, we must have z ∈ U . Hence, we can
fix an affine neighbourhood U of x and work in U . We have

SpecOX,x
∼= // SpecRp

// SpecR
∼= // U,

where p is the prime ideal corresponding to x. Using the previous lemma, we
have:

SpecRp
1−1←→

{
q ∈ SpecR : q ⊂ p

} 1−1←→
{
q ∈ SpecR : p ∈ {q}

}
,

as required.
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Corollary 1.2.17
Let X be a scheme which satisfies (∗) and x ∈ X a point. Then, we have a injec-
tion from the set of prime divisor passing through x to the set of prime divisor of
SpecOX,x.

Proof. As in the proof of the proposition, we fix an affine neighbourhood U of x and
denote by p the point in SpecR corresponding to x. If Z is a divisor of X passing
through x, we denote by q its image in SpecR (we then have q ⊂ p and p is the point
corresponding to the generic point of Z). Now, {qp} is a closed irreducible subset of
SpecRp. Suppose that q′p is a proper closed irreducible subset of Rp containing qp,
we get a point z′ such that {z} ⊂ {z′}. Since Z is of codimension 1, we have z = z′

and so q′p = qp, as required.

Proposition 1.2.18
If X is an irreducible scheme and Y is an integral closed subscheme with generic
point η, then dimOX,η = codim(Y,X). In particular, if X satisfies (∗) and Y has
codimension 1, then OX,η is a discrete valuation ring.

Let Y be a prime divisor of X and η ∈ Y be its generic point. Then, the local
ring OX,η is a valuation ring with valuation vY . Furthermore, the quotient field K
of OX,η is the field of functions of X and the valuation vY extends to a valuation,
again denoted vY , on K.

Definition 1.2.19 (Zero, pole)
Let f ∈ K∗ be a rational function on X. If vY (f) > 0, we say that f has a zero
along Y of order vY (f); if vY (f) < 0, we say that f has a pole of order vY (f) along
Y .

Proposition 1.2.20
Let X satisfy (∗) and let f ∈ K∗. Then vY (f) = 0 for all but finitely many prime
divisors Y of X.

Definition 1.2.21 (Principal divisor)
Let f ∈ K∗ and consider the finite sum

(f) =
∑

vY (f) · Y,

where the sum is taken over all prime divisor Y of X. Then (f) is called the principal
divisor associated to f

Let f, g ∈ K∗. By the properties of the valuations, we have
(
f
g

)
= (f) − (g).

Hence, we get an homomorphism ΦDiv from K∗ to the group DivX.

Example 1.2.22
Let X = A2

k = Spec k[x, y] for some algebraically closed field and f ∈ k[x, y] be a
curve. Then the vanishing set Z of f can be written as Z = V(f1)∪. . .∪V(fn), where
the fi are irreducible polynomials. Then for P = 〈fi〉, vP (f) is the integer r such
that f ∈ P rP and f /∈ P r+1

P . For example, take f(x, y) = x2y. Its vanishing set splits
into V (x)∪V (y). We see that v〈x〉 = 2 and v〈y〉 = 1. Therefore, (f) = 2 ·V(x)+V(y).

In a similar way, we get
(
x2

y

)
= 2 · V(x)−V(y). We can write this in an other way:

if f is as above, then f = f1 · . . . · fn for some irreducible polynomials fi and v〈fi〉(f)
is the maximal power r such that f ri divides f .
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Definition 1.2.23 (Group of principal divisors, divisor class group)
The group of principal divisors is the image of the homomorphism mentioned above.
The divisor class group, which is denoted ClX is the quotient of DivX by the sub-
group of principal divisors.

Example 1.2.24
We have ClAnk = 0. Indeed, let

∑
niYi a divisor of Ank and write Yi = V(fi) for some

irreducible polynomial fi (see Example 1.2.7). Then we have ΦDiv (
∏
fnii ) =

∑
niYi.

1.2.1.1 The case of projective space

We consider in this section X = Pnk . We saw above that the scheme X satisfy (∗).
Let Y be a prime divisor of X. As in the affine case, we have Y = V(f) for some
irreducible homogeneous polynomial f . We define a equivalence relation on the set
of irreducible homogeneous polynomials of k[x0, . . . , xn]:

f ∼ g ⇔ ∃λ ∈ k∗ such that f = λ · g.

Then, we get a bijection between the set of equivalences classes and the prime divisors
of X.

Definition 1.2.25 (Degree of a divisor)
Let Y =

∑
niYi be a Weil divisor of Y . We know that there exists a finite collection

of polynomials f1, . . . , fn such that Y =
∑
niV(fi). We define the degree of Y as∑n

i=1 ni · ∂fi. This degree is denoted ∂Y .

Remark 1.2.26
This notion is well-defined since f ∼ g implies ∂f = ∂g.

Remark 1.2.27
Let h be an homogeneous polynomial. If h = f · g for some polynomials f and g,
then both f and g are homogeneous.

We want to look at the principal divisors of X. As above, we consider some non-
zero homogeneous polynomial f ∈ k[x0, . . . , xn] and write it f = f1 · . . . ·fn where the
fi’s are homogeneous irreducible polynomials. Then, then divisor (f) associated to f
is
∑
niV(fi) where ni = max

{
k ∈ N : fki | f

}
. As above, we have

(
f
g

)
= (f)− (g).

We denote by H the prime divisor x0 = 0: H = V(x0).

Proposition 1.2.28
Let Y be a prime divisor of degree d of X. Then Y ∼ dH.

Proof. Let f1, . . . , fn denote polynomials such that Y =
∑
aiV(fi) and set f =

fa11 · . . . · fann . We can write f =
g
b1
1 ·...·g

br
r

h
c1
1 ·...·h

cs
r

where every bi and cj is greater than 0.
By hypothesis, the degree of the numerator minus the degree of the denominator is
equal to d. Hence, we have(

gb11 · . . . · gbrr
hc11 · . . . · h

cs
r · xd0

)
= Y − dH,

as required.
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Proposition 1.2.29
Let f ∈ K∗. Then, ∂(f) = 0.

Proof. We know that f can be written as a quotient of two homogeneous polynomials
of the same degree. Factor both and them to get (f) and the degree will be 0.

Proposition 1.2.30
The degree map ∂ : DivX −→ Z yields to an isomorphism ClX ∼= Z.

Proof. It is clear that the degree if a homomorphism of groups and it is surjectivce
because ∂(dH) = d for all d ∈ Z. The last proposition shows that principal divisors
are in the kernel of ∂. Now, if D =

∑
niYi −

∑
n′jY

′
j , with ni, n

′
j ≥ 0 and Yi, Y

′
j

prime, has degree 0, we have

D ∼
∑

ni∂Yi ·H −
∑

n′j∂Y
′
j ·H =

∑
(ni∂Yi ·H −

∑
n′j∂Y

′
j ) ·H = 0 ·H.

Hence, D is of the form D = (f), as required.

We saw above (Proposition 1.1.59) that the OX(n) are invertible OX -modules
on X. One can ask if they are all the invertible sheaves (that is if the group of
invertible OX -modules on X is isomorphic to Z). We will see below that there is
some connection between the divisor class group and the group of invertible sheaves.

1.2.2 Cartier divisors

Proposition 1.2.31
Let F be a sheaf of rings. Then, the sheaf F ∗ which associate to every open set U
the group F ∗(U) is a sheaf of groups.

Definition 1.2.32 (Regular element)
Let R be a ring. We say that r ∈ R \ {0} is a regular element of R if it is neither a
left nor a right zero divisor.

Remarks 1.2.33 (i) Invertible elements are regular elements.

(ii) Suppose now that R is commutative. Then, the set S of all regular elements of
R is a multiplicative subset of R. Furthermore, it is the biggest set such that
ϕ : R −→ S−1R is injective.

Let X be a scheme. For every open set U of X, we define:

S(U) =
{
s ∈ OX(U) : sx is regular ∀x ∈ U

}
.

We easily check that S(U) is a multiplicative subset of OX(U).

Definition 1.2.34 (Sheaf of total quotient rings)
Let X be a scheme. We call sheaf of total quotient rings the sheaf associated to the
presheaf U 7−→ S−1(U)OX(U). This sheaf is denoted by K .

Remarks 1.2.35 (i) One could have defined the set S(U) as the set of regular
elements of OX(U). The problem is that a regular element s can be sent to a
zero divisor by the restriction map and the association U 7−→ S−1(U)OX(U)
fails to be a presheaf.
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(ii) SinceOX can be identified to a subring of S−1(U)OX(U), we obtain an injective
morphism i : OX −→ K . In a similar way, we get a monomorpism O∗X −→
K ∗.

Definition 1.2.36 (Cartier divisor)
A Cartier divisor of a scheme X is a global section of K ∗/O∗X . We denote by
CaDiv(X) the group of Cartier divisors of X.

Definition 1.2.37 (Principal Cartier divisor, linearly equivalent Cartier divisors)
A Cartier divisor is principal if it is in the image of πX , where π : K ∗ −→ K ∗/O∗X
is the canonical map. Two cartiers divisors f, g are linearly equivalent if f/g is
principal. We denote by CaCl(X) the group of Cartier divisor modulo principal
divisors.

To describe a Cartier divisor, we can give an open covering {Ui} ofX and elements
fi ∈ K ∗(Ui) which can be glued together. This is equivalent to say that the element
fi|Ui∩Uj · fj |Ui∩Uj

−1 is in O∗X(Ui ∩ Uj) for all i, j. In this case, the multiplication of
two Cartier divisors is given by{

Ui, fi
}
·
{
U ′j , f

′
j

}
=
{
Ui ∩ U ′j , fi

∣∣
Ui∩U ′j

· f ′j
∣∣
Ui∩U ′j

}
.

1.2.2.1 The case of an integral separated scheme

When we define a presheaf of abelian groups on a topological space X, we said that
it is a contravariant functor from the category of open sets of X (which is denoted
TX) to the category of abelian groups (with the extra condition that the empty set
is mapped to the trivial group). We could have chosen some subcategory of TX and
tried to do the same. For example, let C be some base for the topology of X closed
under intersection (considered as a category with inclusions as morphisms). We can
define presheaves of C. Furthermore, we can express sheaves conditions as we did
in the “standard case”. Now, if FC is a sheaf on X (i.e., a functor from C to the
category of abelian groups, or rings, ...) there exists a unique sheaf F which extend
FC , that is FC(V ) = F (V ) for every V ∈ C.

Proposition 1.2.38
Let X be a separated scheme and let U, V be two affine sets. Then, U ∩ V is affine.

Proof. See Chapter 3, Proposition 3.15 of [Liu06].

Proposition 1.2.39
Let X be a integral separated scheme. Then, K is the constant sheaf K, where K is
the field of functions of X.

Proof. We know (cf. Proposition 1.2.12) that the field of fractions of OX(U) is K for
every affine set U . Taking C to be the basis consisting of all open affine sets, we get
the constant presheaf FC which maps every affine set to K. Since X is irreducible,
so is any open subset U of X. Hence, any open set is connected and the presheaf FC
is a sheaf. Therefore, the sheaf of total quotient rings K is the unique sheaf which
extends FC (see the remark above). Hence, F (U) = K for every open set U .
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Example 1.2.40 (The case of the projective space)
We takeX = Pnk . We see thatK is the subfield of k(x0, . . . , xn) consisting of elements
of degree 0 and for 0 ≤ i < j ≤ n:

OX(Ui ∩ Uj)∗ ∼= k[x0, . . . , xn]∗(xixj) =

{
f ∈ k

[
x0, . . . , xn,

1

xi
,

1

xj

]
: ∂f = 0

}∗
=
{
f ∈ k(xi, xj) : ∂f = 0

}
.

Hence, a Cartier divisor can be given by a collection of polynomials f0, . . . , fn in
k(x0, . . . , xn) such that fifj−1 ∈ k(xi, xj). For example, choose an homogeneous
polynomial f of degree 1 in k[x0, . . . , xn] and set fi = f

xi
. Then,

{
D+(xi), fi

}
is a

Cartier divisor.

1.2.2.2 Links between Weil and Cartier divisors

Definition 1.2.41 (Locally factorial scheme)
We say that a scheme X is locally factorial if OX,x is a UFD for every x ∈ X.

Proposition 1.2.42
Let X be a locally factorial scheme which satisfies (∗), that is: X is a noetherian
integral separated scheme which is regular in codimension one.Then, the group DivX
is isomorphic to the group of cartier divisor K ∗/O∗X(X). Furthermore, the principal
Weil divisors correspond to the principal Cartier divisors under this isomorphism.

Proof. First, remark that a Cartier divisor can be given in many ways, depending
on the open covering we choose. Hence, we can fix an open affine covering {Ui}i∈I
of X (since X is noetherian, we may assume that I is finite). Now, a Cartier divisor

is a collection of elements fi ∈ K ∗(Ui) such that
fi|Ui∩Uj
fj |Ui∩Uj

∈ O∗X(Ui ∩ Uj) for all i, j.

Proposition 1.2.12 implies that K ∗(Ui) ∼= K∗ so we may assume that each fi lives
in K∗. Let f be the global section defined by the {Ui, fi} and Y be a prime divisor
of Y . Then, pick some i such that Y ∩Ui 6= ∅ and set nY (f) = vY (fi). If i and j are

such that Ui ∩ Y 6= ∅ 6= Y ∩ Uj , then the condition
fi|Ui∩Uj
fj |Ui∩Uj

∈ O∗X(Ui ∩ Uj) implies

vY

(
fi|Ui∩Uj
fj |Ui∩Uj

)
= 0 and thus vY (fi) = vY (fj). Hence, we get a divisor

∑
nY (f) · Y

(remark that only a finite number of the vY (fi) 6= 0 for each fi, so the sum is finite
since the number of the Ui is also finite). Note that the properties of the valuations
imply that the association

Ψ : f 7−→
∑

nY (f) · Y

is a homomorphism of groups.

Now, let Y be a prime divisor on X. For every x ∈ X, we denote by Ux an affine
open set which contains x. If Y contains x, we get a prime divisor Yx of SpecOX,x
(see Corollary 1.2.17). Since OX,x is an UFD, there exists some f ′x ∈ FracOX,x
such that (f ′x) = Yx (the proof is similar as in the Example 1.2.24; see Proposition
II.6.2 of [Har77]). Consider the image of f ′x in K under the injective morphism
FracOX,x −→ OX,η (see Corollary 1.2.14) and call it g′x. We get a divisor (g′x) of
X and its image in SpecOX,x is equal to Yx. Thus, Y and (g′x) have the same “Y -
component”, that is: (g′x) = Y +

∑n
i=1 ni ·Yi with x /∈ Yi. Suppose that f ′x = [Vx, fx]
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where fx ∈ FracOX(Vx) and take Wx ⊂ Vx
⋂n
i=1(X \ Yi) with Wx affine. Then, the

element fx = f ′x
∣∣
Wx

satisfies (fx)
∣∣
Wx

= Y
∣∣
Wx

(if fx is viewed in K). Since X is com-
pact, we can cover X with the Wx (if x /∈ Y , just take fx = 1). These elements can
be patched together to get a Cartier divisor {Wx, fx} (see Lemma 32 of [Mur06]).
The properties of the free abelian group imply the existence of a homomorphism
Φ : Div(X) −→ CaDiv(X).

To check that ΨΦ = idDivX , it suffice to show that ΨΦ(Y ) = Y for every prime
divisor Y ∈ Div(X). If {Ux, fx} = Φ(Y ), then (fx)

∣∣
Ux

= Y
∣∣
Ux

for every x such that
UX ∩ Y 6= ∅. Thus, vY (fx) = 1. If Z is another prime divisor, there exists some Ux
such that Ux ∩ Z 6= ∅ and vZ(fx) = 0 which implies that Z have coefficient zero in
ΨΦ(Y ).

Now, if C = {Ux, fx} is a Cartier divisor and D =
∑
CY · Y is obtained from D,

set gx as the image in the field of function of SpecOX,x of the element fx. Then,
(gx) = Dx and the image of D in CaDiv(X) will be C.

Finally, it is easy to see that principal Cartier divisors correspond to principal
Weil divisors: if C = π(f), then the Weil divisor Ψ(C) is (f). On the other hand, if
f ∈ K gives the Weil divisor D, then the image g ∈ K ∗ of f will give the Cartier
divisor Φ(D).

Example 1.2.43
We come back to the Example 1.2.40 and take an homogeneous polynomial f of
degree 1 in k[x0, . . . , xn]. We have the Cartier divisor C represented by

{
D+(xi), fi

}
.

On the other hand, f define a Weil prime divisor V(f). These two divisors are
associated under the bijection between Div(X) and CaDiv(X).

1.2.3 Picard group

Receall (Definition 1.1.34) that an OX -module F is invertible if it is locally free of
rank 1.

Proposition 1.2.44
The product of two invertible sheaves is again invertible.

Proof. Let {Vi} be an open covering of X such that F
∣∣
Vi

and G
∣∣
Vi

are free of rank 1.
Then, (

F ⊗OX G
)∣∣
Vi
∼= F

∣∣
Vi
⊗OX |Vi G

∣∣
Vi
∼= OX

∣∣
Vi
⊗OX |Vi OX

∣∣
Vi
∼= OX

∣∣
Vi
.

Proposition 1.2.45
Let F be an invertible sheaf. Then, the sheaf H om(F ,OX) satisfies

H om(F ,OX)⊗F ∼= OX .

Sketch of proof. First, show that H om(F ,OX)⊗OX F ∼= H om(F ,F ). Then, the
result follows since Hom

(
OX
∣∣
U
,OX

∣∣
U

) ∼= OX(U).

Corollary 1.2.46
Let OX be a ringed space. The set of isomorphism classes of invertible OX-modules
with ⊗ is an abelian group.
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Definition 1.2.47 (Picard group)
The group defined in the last Corollary is the Picard group of the scheme X. It is
denoted by Pic(X).

Example 1.2.48
We saw that the OX(m) are invertible sheaves on Pn. Thus, Pic

(
Pn
)
contains a

subgroup which is the image of Z. On the other hand, we saw that ClPn ∼= Z. We
will see later that we have PicX ∼= ClX.

1.2.3.1 Links between Cartier divisors and the Picard group

Let X be a scheme and let D be a Cartier divisor on X represented by {Ui, fi}. For
each i, let Fi be the OX

∣∣
Ui
-module defined as follows: for all U ⊂ Ui, set

Fi(U) = OX(U) · f−1
i

∣∣
U
.

Then, the map which send r ∈ OX(U) to rf−1
i

∣∣
U
is an isomorphism. The surjectivity

is clear. Now, if we write fi
∣∣
U
as r′

s′ and r is such that rf−1
i

∣∣
U
, we get rs′s′′ = 0 for

some s′′ ∈ S(U) which implies that r = 0. Since
fi|Ui∩Uj
fj |Ui∩Uj

∈ O∗X(Ui∩Uj), the elements

fi
∣∣
Ui∩Uj

and fj
∣∣
Ui∩Uj

generate the same OX(Ui∩Uj) module. Therefore, we can glue
the Fi to get an invertible OX -module L(D). Note that L(D) is a subsheaf of K .

Remark 1.2.49
If we take each fi = 1, we have L(D)(Ui) = OX(Ui) and so L(D) ∼= OX . Hence, the
neutral element of CaDiv(X) is sent to the neutral element of Pic(X).

Proposition 1.2.50
The map which send a Cartier divisor D to L(D) gives rise to a bijection between
Cartier divisors on X and invertible subsheaves of K .

Proof. Let L be an invertible subsheaf of K . Choose a generator f ∈ OX(X) (which
means that f

∣∣
U
is a generator for L(U) as an OX(U)-module for each open set U).

Then, it is easy to see that L
(
{X, f−1}) = L. Let L be an invertible subsheaf of K .

If {fi} and {f ′i} are two family of elements such that f−1
i and f ′i

−1 both generate L,
then fi must differ from f ′i by an invertible element of OX(Ui). Hence, the global
sections in K ∗/O∗X will be the same.

Proposition 1.2.51
Let D1 and D2 be two Cartier divisors. Then, D1 ∼ D2 if and only if L(D1) ∼= L(D2)
(as OX-modules).

Proof. We can make two proofs of this fact:

(i) First, note that

L(D1) ∼= L(D2)⇔ L(D1)⊗OX L(D2)−1 ∼= OX ⇔ L(D1/D2) ∼= OX .

Hence, it suffices to show that a Cartier divisor D is principal if and only if
L(D) ∼= OX . Suppose D is principal and let f ∈ K ∗ be such that D = πX(f),
where π : K ∗ −→ K ∗/O∗X . Then, D = {X, f} and f

∣∣
U
is a basis for L(D)(U)

for every open set U . On the other hand, if L(D) ∼= OX , then choose a basis
{f} of L(D)(X). Now, we have D = πX(f), as required.
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(ii) We have the exact sequence 1 //O∗X //K ∗ π //K ∗/O∗X
//1 which gives

rise to a long exact sequence in cohomology

1 // O∗X(X)
η //K ∗(X)

πX //K ∗/O∗X(X)
δ0 // H1

(
O∗X
)

// . . .

Since Pic(X) ∼= H1
(
X,O∗X

)
(see Theorem 2.3.3), the result follows.

Using the above results we get the following proposition:

Proposition 1.2.52
Let X be an integral scheme. Then, the map ψ : CaCl(X) −→ Pic(OX) which sends
D to L(D) is bijective.

Proof. By the previous two propositions we know that ψ is injective. Thus, all we
have to show is that we can realise an inversible sheaf as a subsheaf of K .
Let L be an invertible sheaf on X. We have to define a monomorphism α : L −→ K .
If η ∈ X denote the generic point of X, the fact that X is integral implies

K (U) ∼= K ∼= OX,η.

Thus, we can define:

αU : L(U) −→ OX,η
s 7−→ sη.

On the stalks, we have αx
(
[U, s]

)
= [U, s] ∈ OX,η. This implies that αx is a monomor-

phism (see Corollary 1.2.14) and so is α.

Proposition 1.2.53
Let X be a locally factorial scheme which satisfies (∗). Then, CaCl(X) ∼= Pic(X).

Proof. Follows from the last proposition and Proposition 1.2.42.

Proposition 1.2.54
Let X = Pnk . Then, every invertible sheaf L is isomorphic to some OX(m), for a
unique m ∈ Z.

Proof. We have the following isomorphisms:

Z
∼= // Cl(X)

∼= // CaCl(X)
∼=
ϕ

// Pic(X)

1 � // V(x0) � 1.2.43 //
[{
D+(xi),

x0
xi

)] �
ϕ

// OX(1)

We only have to check that the image of
[{
D+(xi),

x0
xi

)]
by ϕ is indeed OX(1).

We denote by fij the element fi|Ui∩Uj ·
(
fj |Ui∩Uj

)−1 ∈ O∗X(Ui∩Uj) of the association
from Cartier divisor to the Picard group.

(i) For OX(1)
We know that OX(1)

(
D+(xi)

)
can be identified with polynomials of degree 1

in k
[
x0, . . . , xn,

1
xi

]
. Hence, we have OX(1)

(
D+(xi)

)
= xi · OX

(
D+(xi)

)
which

implies that fij =
xj
xi
.
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(ii) For the Cartier divisor
[{
D+(xi),

x0
xi

)]
We have fij = x0

xi

(
x0
xj

)−1
=

xj
xi
.

This implies that the image of
[{
D+(xi),

x0
xi

)]
in Pic(X) is OX(1). Hence, Pic(X)

is generated by OX(1), as required.



Chapter 2

Cohomology

2.1 Review of homological algebra

In this section, we present briefly some concepts of homological algebra which will
be used in the cohomology of sheaves. From now, A and B denote two abelian
categories. The concepts presented can be found in [Har77] and [Rot08].

Definition 2.1.1 (Complex)
A complex, or cochain complex, (A•, d) in A is a collection of objects An ∈ A ,
n ∈ Z and morphisms dn : An −→ An+1 such that dn+1dn = 0.

Examples 2.1.2 (i) All exact sequences are complexes.

(ii) In differential geometry the algebras of n-forms Ωn(M) of a manifoldM and the
exterior derivatives dn : Ωn(M) −→ Ωn+1(M) form a complex. Its cohomology
yields to the de Rham cohomology.

Definition 2.1.3 (Morphism of complexes)
Let (A•, d) and (B•, d) be two complexes in A . A morphism f from A• to B•,
denoted by f : A• −→ B•, is a collection of morphisms fn : An −→ Bn such that
fn+1dn = dnfn, for all n ∈ Z.

If f : A• −→ B• and g : A• −→ C• are two morphisms of complexes, then we
have a morphism of complexes gf : A• −→ C• defined by (gf)n = gnfn. Hence, we
have the category Comp(A ) of complexes in A . One can check that Comp(A )
is an abelian category. Furthermore, the kernel and the image of a morphism f :
A• −→ B• is taken componentwise, that is: the kernel of f is

(
(ker f)•, n) where

(ker f)n = ker fn and in is the “inclusion” of ker fn into An.

Definition 2.1.4 (Cohomology object)
Let A• be a complex. The nth cohomology object, denoted by hn(A•), is defined as
ker dn/im dn+1.

Remark 2.1.5

29
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To construct this nth cohomology object, consider the following situation:

An−1 dn−1
//

%%

γn−1 11

An
dn // An+1

im dn−1
+ �

99

δn−1

%%
ker dn
?�

OO

where γn−1 is induced by the universal property of the kernel and δn−1 is induced by
the universal property of the image (since any equalizer is a monomorphism). Then
take hn(A•) = coker δn−1.

We recall the following theorem.

Theorem 2.1.6 (Mitchell’s embedding theorem)
Every small abelian category admits a full, faithful and exact functor to the category
of left R-modules for some ring R.

This theorem allows us to make proofs by diagram-chasing.

Proposition 2.1.7
Let f : A• −→ B•. Then f induces morphisms hn(f) : hn(A•) −→ hn(B•).

Proposition 2.1.8

Let 0 //A•
f //B•

g //C• //0 be a short exact sequence of complexes in A .
Then there exists morphisms δi : hi(C•) −→ hi+1(A•) giving rise to a long exact
sequence

. . . // hi(A•) // hi(B•) // hi(C•) // hi+1(A•) // . . .

Proof. Consider the following diagram:

An/im dn−1
A

fn //

dnA

��

An/im dn−1
B

gn //

dnB

��

An/im dn−1
C

dnC

��

// 0

0 // ker dn+1
A

fn+1|
ker dn+1

A // ker di+1
B

gn+1|
ker dn+1

B // ker di+1
C

where:

• dnA : a+ im dn−1
A 7−→ dnA(a);

• fn : a+ im dn−1
A 7−→ f(a) + im dn−1

B ;

• dnB, dnC and gn are defined in a similar way.

Then one can check that the two rows are exact and the following equalities hold:

ker dnA = hn(A), ker dnB = hn(B), ker dnC = hn(C),

coker dnA = hn+1(A), coker dnB = hn+1(B), coker dnC = hn+1(C).

Finally, the snake lemma gives the result.
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Definition 2.1.9 (Injective object)
An object I of A is injective if the functor HomA (−, I) is exact.

Remarks & examples 2.1.10 (i) If A is the category of R-modules, then this
definition coincide with the definition of an injective module.

(ii) A product of injective objects is injective.

(iii) The object 0 is injective.

Definition 2.1.11 (Injective resolution)
Let A be an object of A . An injective resolution is an exact sequence in A

0 // A // I0 // I1 // . . .

such that each In is injective.

Definition 2.1.12 (Deleted injective resolution)
Let A be an object of A and I = 0 //A //I0 //I1 // . . . be an injective
resolution for A. Then the deleted injective resolution IA of A is the sequence

0 // I0 // I1 // . . .

Definition 2.1.13
If every object of A is isomorphic to a subobject of an injective object, we say that
A has enough injectives.

Proposition 2.1.14
If A has enough injectives, then every object of A has an injective resolution.

Proof. Let A be an object of A . By hypothesis, there exists an injective object I0 of
A and a monomorphism ε : A −→ I0. Now, suppose that we have an exact sequence

0 // A
ε // I0 d0 // I1 d1 // . . .

dn−1
// In.

Consider the monomorphism α : In/im dn−1 −→ In+1, for some injective object
In+1. Then take dn = απ, where π is the canonical map from In to In/im dn−1.

From now, we suppose that A has enough injectives.

Definition 2.1.15 (Right derived functor)
Let F : A −→ B be a covariant additive left exact functor. Then we construct the
right derived functors RnF as follows:

• For each object A of A , fix an injective resolution I•A of A.

• For all n ∈ N0 and every A ∈ A , set RnF (A) = hn
(
FIAA

)
, where IAA is the

deleted resolution of A.

Remark 2.1.16
The sequence 0 //FI0 Fd1 //FI1 // . . . may fails to be exact but is a complex.

Remark 2.1.17
Let F and A as in definition. Then R0F = kerFd0 ∼= F (A) since F is left exact.



32 CHAPTER 2. COHOMOLOGY

Theorem 2.1.18
Let F : A −→ B be a covariant additive left exact functor. Then RnT : A −→ B
is an additive covariant functor for every n ∈ N0.

Proof. See the Comparaison Theorem of [Rot08].

Theorem 2.1.19
Let F : A −→ B be a covariant additive left exact functor. Then:

(i) The definition of R is independant of the choice of the injective resolutions.

(ii) For each short exact sequence 0 //A
f //B

g //C //0 in A and for each
n ∈ N0, there is a morphism δn : RnF (C) −→ Rn+1F (A) such that we obtain
a long exact sequence

. . . // RnF (A) // RnF (B) // RnF (C) //δn // Rn+1F (A) // . . .

Proof. See Proposition 6.20, Corollary 6.22 and Theorem 6.27 of [Rot08].

Corollary 2.1.20
Let I be an injective object. Then RnFI = 0 for all n ∈ N.

Proof. Since the choice of the injective resolution is irrelevant, we can choose the
following one:

0 // I
id // I // 0 // 0 // . . .

Therefore, RnFI = 0 for all n ∈ N.

2.2 Cohomology of sheaves

2.2.1 Derived functor definition

We know that Ab(X) (the category of sheaves on a topological space) and M od(OX)
(the category of OX -modules) are abelian categories. Furthermore, since the global
section functor Γ(X,−) which sends a sheaf F to Γ(X,F ) = F (X) is an additive
left exact functor, we can consider its right derived functors. It can easily be shown
(Proposition II.2.2 of [Har77]) that M od(OX) has enough injectives. In particular,
Ab(X) has enough injectives (a sheaf can be viewed as a Z-module). Hence we can
give the following definition:

Definition 2.2.1
For any topological space X, we define the cohomology functors Hn(X,−) as the
right derived functors of Γ(X,−).

Remark 2.2.2
In this definition, we consider just the abelian group sheaf structure of a sheaf F ,
even if F has the extra structure of an OX -module. However, it can be shown that
if (X,OX) is a ringed space, the derived functors of Γ(X,−) from M od(OX) to Ab
coincide with the Hn(X,−) as defined above.
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2.2.2 Čech cohomology

Let X be a topological space, U = {Ui}i∈I be a covering of X and consider a well-
order < on I. For i0, . . . , in ∈ I, we denote by Ui0,...,in the set Ui0 ∩ . . . ∩ Uin . Now,
let F be a sheaf on X and n ∈ N0. We define the following group:

Cn(U ,F ) =
∏

i0<...<in

F
(
Ui0,...,in

)
.

Then, we define the map

dn : Cn(U ,F ) −→ Cn+1(U ,F )

s 7−→ dns, (dns)i0,...,in+1 =
n+1∑
j=0

(−1)jsi0,...,îj ,...in+1

∣∣
Ui0,...,in+1

,

where i0, . . . , îj , . . . in+1 means i0, . . . , ij−1, ij+1, . . . , in+1. One can check that the
composition dn+1dn = 0.

Remark 2.2.3
Although it will not be mentioned explicitely, in these constructions, the i0, . . . , in
are supposed distinct.

Definition 2.2.4 (Čech cohomology group)
Let X be a topological space, F be a sheaf on X and U as above and n ∈ N0. Then
the nth Čech cohomology group of F (with respect to U ), is hnC•(U ,F ) and is
denoted Ȟn(U ,F ).

Proposition 2.2.5 (Functoriality of Ȟ)
Let X and U as in the definition and α : F −→ G a morphism of sheaves on X.
Then α induces a morphism of complexes α : C•(U ,F ) −→ C•(U ,G ). Further-
more, this association is functorial. Therefore, α induces a homomorphism between
Ȟn(U ,F ) and Ȟn(U ,G ) for all n ∈ N0.

Proof. First define the following homomorphism:

αn : Cn(U ,F ) −→ Cn(U ,G )

s 7−→ αn(s),
(
αn(s)

)
i0,...,in

= αUi0,...,in (si0,...,in).

Then it is easy to see that this homomorphism commutes with d.

Let {Fi}i∈I be a collection of sheaves on a topological space X. Since the sheaf
product is defined as (

∏
Fi) (U) =

∏
Fi(U) for all open set U and since restriction

maps on the sheaf product are defined componentwise, we have the following result.

Proposition 2.2.6
Direct product commutes with Čech cohomology.

Theorem 2.2.7
Let X be a noetherian separated scheme, U be an open affine cover of X and F a
quasi-coherent sheaf on X. Then for all n ∈ N0 we have Ȟn(U ,F ) ∼= Hn(X,F ).

Proof. See [Har77, II.4.5].

This theorem is very useful to compute cohmology groups since it is not easy to
find an injective resolution of a sheaf.
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2.2.2.1 Remarks, examples and first properties

Remarks 2.2.8
We make the following remarks:

(i) We have Ȟ0(U ,F ) ∼= F (X). To see that, take α ∈ Ȟ0(U ,F ). If i, j ∈ I are
distinct elements, then i < j or j < i and the condition α ∈ ker d0 implies that
αi
∣∣
Ui∩Uj

= αj
∣∣
Ui∩Uj

. So the αi glue to an element t ∈ F (X).

(ii) If |I| = N < ∞, then Ȟn(U ,F ) = 0 for all n ≥ N . Indeed, we cannot fnd
more than N distinct elements in I.

(iii) Although Ȟ0(U ,F ) ∼= R0Γ(F ), this is not the case for all n. In particular,
Ȟ may fail to give a long exact sequence. Consider X = C∗, U = {X} (which
means that Ȟn(U ,F ) = 0 for all n ≥ 1) and the following exact sequence

0 // Z // O Φ // O∗ // 0,

where Z is the constant sheaf (Z(U) is the set of all continuous functions from
U to Z, endowed with the discrete topology), O is the sheaf of holomorphic
functions of X, O∗ is the sheaf of non-vanishing homolomorphic functions and
Φ maps f to exp(2πf). Since Ȟ0(U ,F ) = F (X) for every sheaf F , we have

0 // Z(X) // O(X)
ΦX // O∗(X).

And this sequences is not exact if we add Ȟ1(U ,Z) = 0 on the right, since id
is not in the image of ΦX .

Example 2.2.9
Let X = S1, the unit circle and let U = {U0, U1} where U0 and U1 are two open
half-circles which overlap. We consider the constant sheaf Z on X. Let us show that
Ȟ0(U ,Z) = Z, Ȟ1(U ,Z) = Z and Ȟ2(U ,Z) = 0. We have

C0(U ,Z) = Γ(U0,Z)× Γ(U1,Z), C1(U ,Z) = Z(U0 ∩ U1) = Z× Z.

The first equality holds because U0 and U1 are connected (recall that Z is endowed
with the discrete topology) and the second one because there is two connected com-
ponent. We have

Z(U0)× Z(U1)
d0 //

ϕ

��

Z(U0 ∩ U1)

ψ

��
Z× Z

d̃0
// Z× Z

where ϕ(f, g) =
(
f(−1, 0), g(1, 0)

)
and ψ(h) =

(
h(−1, 0), h(1, 0)

)
. Then we have

f̃0(a, b) = (b − a, b − a). Since Ȟ2(U ,Z) = 0, we have Ȟ1(U ,Z) = Z (we knew
already that Ȟ0(U ,Z) = Z).

Example 2.2.10
Let k be a field and consider Ank for some n ∈ N. Then Hm(Ank ,F ) = 0 for all m ∈ N
and every quasi-coherent sheaf F on Ank . Indeed, since {Ank} is itself an affine open
covering of the space, the result follows from Theorem 2.2.7 and Remark 2.2.8.
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Example 2.2.11
Let k be a field and consider the subvariety U = D(x) ∪D(y) of X = Spec k[x, y].
Let U be the affine covering {D(x), D(y)} of X. We will show that H1(U ,OU )
is an infinite vector space over k. By Theorem 2.2.7 it is sufficient to show that
Ȟ1(U ,OX) is an infinite vector space over k. Since Ȟ2(U ,OU ) = 0, we know that
we have the equality Ȟ1(U ,OU ) = C1(U ,OU )/im d0. Furthermore, we have

C0(U ,OU ) ∼= k[x, y]x × k[x, y]y = k

[
x, y,

1

x

]
× k

[
x, y,

1

y

]
C1(U ,OU ) ∼= k[x, y]xy = k

[
x, y,

1

y
,

1

x

]
.

The map d0 : k
[
x, y, 1

x

]
× k

[
x, y, 1

y

]
−→ k

[
x, y, 1

y ,
1
x

]
is the following:

(f, g) 7−→ g − f.

Consider the vector space V with basis
{
xiyj : i, j ∈ Z, i, j < 0

}
. We want to

show that Ȟ1(U ,OU ) ∼= V . We define a map φ : k
[
x, y, 1

y ,
1
x

]
−→ V by extending

by linearity the map

xiyj 7−→

{
xiyj if i < 0, j < 0,

0 else.

Since kerφ = im d0, the result follows.

Proposition 2.2.12
Let X and Y be noetherian separated schemes and f : X −→ Y be an affine mor-
phism. Then Hn(X,F ) ∼= Hn(Y, f∗X) for all n ∈ N0 and every quasi-coherent sheaf
F on X.

Proof. Let F be a quasi-coherent sheaf. From assumption f∗F is also quasi-coherent
and Theorem 2.2.7 we need to show that Ȟn(U ,F ) ∼= Ȟn(U ′, f∗F ) for some affine
coverings U of X and U ′ of Y . Let U ′ = {Vi}i∈I be an affine open covering of Y .
By assumption, U =

{
Ui = f−1Vi : i ∈ I

}
is an affine open covering of X. Then we

see that Cn(U ,F ) = Cn(U ′, f∗F ).

Proposition 2.2.13
Let X a noetherian topological space. Let Λ be a directed set and

{
Fλ

}
λ∈Λ

be a direct
system of sheaves on X. Then the association U 7−→ L(U) := lim−→Fλ(U) defines a
sheaf on X.

Proof. It is clear that L is a presheaf of X. Let U be an open set of X and {Ui}i∈I
be an open cover of U . Since X is noetherian, the subspace U is compact and so
U = U1 ∪ . . . ∪ Un. Let [λ, s] ∈ L(U) such that [λ, s]

∣∣
Ui

=
[
λ, s
∣∣
Ui

]
= 0. Thus, there

exist λ1, . . . , λn such that ρλ,λiUi

(
s
∣∣
Ui

)
= 0. Then choose µ ∈ Λ such that λi ≤ µ for

all 1 ≤ i ≤ n. We have

ρλ,µU (s)
∣∣
Ui

= ρλ,µUi
(
s
∣∣
Ui

)
= ρλ,µUi ρ

λ,λi
Ui

(
s
∣∣
Ui

)
= 0.

Therefore, ρλ,µU (s) = 0 which implies that [λ, s] = 0, as required. The glueing
condition can be checked in a similar way.
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The following proposition is exercise 5.2.6 of [Liu06].

Proposition 2.2.14
Let X a noetherian topological space and U be an open cover of X. Let Λ be a
directed set and

{
Fλ

}
λ∈Λ

be a direct system of sheaves on X. Then, for all n ∈ N0,
we have

lim−→ Ȟn(U ,Fλ) ∼= Ȟn
(
U , lim−→Fλ

)
.

Proof. We denote by F the sheaf lim−→Fλ. First remark that since Ȟn is a functor,
Hn

(
U , lim−→Fλ

)
is a direct system of groups and the question makes sense. For this

proof, we denote by I a multi-index i0, . . . , in, where i0 < . . . < in. Then, if s is
an element of Cn(U ,F ), we can write sI and UI with the same meaning as above.
Furthermore, if 0 ≤ j ≤ n, then I, ĵ will denote i0, . . . , ĵ, . . . , in. Now, fix n ∈ N0

and for every α ∈ Λ consider

ϕ̃α : Cn(U ,Fλ) −→ Cn(U , lim−→Fλ)

s 7−→ ϕ̃α(s), ϕ̃α(s)I = [λ, sI ].

We first check that im ϕ̃α
∣∣
ker dnα

⊂ ker dn:

(
dnϕ̃α(s)

)
J

=
n+1∑
j=0

(−1)jϕ̃α(s)J,ĵ
∣∣
UJ

=
n+1∑
j=0

(−1)j
[
α, sJ,ĵ

]∣∣
UJ

=
[
α,

n+1∑
j=0

(−1)jsJ,ĵ
∣∣
UJ

]
=
[
α, dnα(s)J

]
= 0.

A similar calculation shows that if s ∈ im dn−1
α , then ϕ̃α(s) ∈ im dn−1. So we obtain

maps ϕλ : Hn(U ,Fα) ∼= Ȟn
(
U , lim−→Fλ

)
. Since these maps are compatible with the

morphisms ρα,β we get a morphism from lim−→ Ȟn(U ,Fλ) to Ȟn
(
U , lim−→Fλ

)
. Then

one can check that this morphism is an isomorphism.

2.2.2.2 Projective spaces and twisted sheafs

We consider in this subsection the projective space and some twisted sheafs. Let’s
take some algebraically closed field k, n ∈ N0 and set Xn = Proj k[x0, . . . , xn]. We
have seen that the scheme Xn is separated and noetherian and we can take the affine
open covering U =

{
D+(x0), . . . , D+(xn)

}
. We compute here a few Čech cohomol-

ogy groups for the coherent sheaves OX(m) on Xn with respect to this covering.
Note that by Theorem 2.2.7 this coincides with the groups Hr

(
Xn,OX(m)

)
.

Example 2.2.15 (n = 0)
We have Proj k[x] equals Spec k which implies that H1

(
X0,OX(m)

)
= 0 for every

m.

Example 2.2.16 (n = 1,m = 0)
We take the open covering U =

{
D+(x), D+(y)

}
of X = P1 and set R = k[x, y].

We will show that Ȟ0(P1,OX) = k and Ȟ1(P1,OX) = 0. We know that Ȟ0(U ,OX)
is the global sections of OX , that is the polynomials of degree 0 of k[x, y]. We have
also the following equalities

C0(U ,OX) = OX
(
D+(x)

)
×OX

(
D+(y)

)
= k[x, y](x) × k[x, y](y)

C1(U ,OX) = OX
(
D+(xy)

)
= k[x, y](xy).



2.2. COHOMOLOGY OF SHEAVES 37

Recalling that R(f) consists of elements of degree 0 in Rf , we find:

C0(U ,OX) = k
[y
x

]
× k

[
x

y

]
, C1(U ,OX) = k

[
x

y
,
y

x

]
.

Furthermore, the map d0 send a pair of polynomials (f, g) to the polynomial g − f .
Since C2(U ,OX) = 0, we know that k

[
x
y ,

y
x

]
/im d0. Now, it is easy to see that k,

x
y and y

x are all included in im d0. Hence, Ȟ1(U ,OX) = 0.

More general calculations We now consider the case where n ∈ N and m ∈ Z.
We have the open covering U =

{
D+(x0), . . . , D+(xn)

}
. If we fix i0 < . . . < ik for

some k ∈ N and set R = k[x0, . . . , xn], we have

OX(m)
(
D+(xi0) ∩ . . . ∩D+(xik)

)
= OX(m)

(
D+(xi0 · . . . · xik)

)
= R̃(m)

(
D+(xi0 · . . . · xik)

)
1.1.57

= Γ
(

SpecR(xi0 ·...·xik ),
(
R(m)(xi0 ·...·xik )

)∼)
.

Looking at the proof of Proposition II.2.5 of [Har77], we find that the last term con-
sist of homogeneous elements of degree m in k[x0, . . . , xn]xi0 ·...·xik (with the standard

graduation), that is: homogeneous elements of degreem in k
[
x0, . . . , xn,

1
xi0
, . . . , 1

xik

]
.

We will denote this vector space by k
[
x0, . . . , xn,

1
xi0
, . . . , 1

xik

]
m
.

Proposition 2.2.17
Let n ∈ N and X = Proj k[x0, . . . , xn]. Then we have

(i) k[x0, . . . , xn] ∼=
⊕

m∈ZH
0
(
X,OX(m)

)
;

(ii) Hn
(
X,OX(−n− 1)

) ∼= k.

Proof. (i) Follows directly from Proposition 1.1.61 and Remark 2.2.8.

(ii) We set m = −n − 1. First, remark that since |U | = n + 1, we have ker dn =
Cn
(
U ,OX(m)

)
. By the above calculations, we know that Cn

(
U ,OX(m)

)
is

equal to k
[
x0, . . . , xn,

1
x0
, . . . , 1

xn

]
m
. On the other hand, we have

Cn−1
(
U ,OX(m)

)
=

n+1∏
j=0

k

[
x0, . . . , xn,

1

x0
, . . . ,

1̂

xj
, . . .

1

xn

]
m

and the map dn−1 from Cn−1
(
U ,OX(m)

)
to Cn

(
U ,OX(m)

)
is just the “al-

ternating inclusion”:

dn−1(f0, . . . , fn) = f0 − f1 + . . .+ (−1)nfn.

As a k-vector space Cn
(
U ,OX(m)

)
admits the following basis:{

xa00 · . . . · x
an
n : ai ∈ Z, a0 + . . .+ an = m

}
.

Furthermore, the vector space im dn−1 ⊂ Cn
(
U ,OX(m)

)
has the basis{

xa00 · . . . · x
an
n : ai ∈ Z, a0 + . . .+ an = m,∃j such that aj ≥ 0

}
.

Hence, Hn
(
X,OX(−n−1)

)
has

{
xa00 ·. . .·xann : ai ∈ Z, a0+. . .+an = m, ai < 0

}
as a basis. The only possibility to have such monomials have degree −n− 1 is
a0 = a1 = . . . = an = −1. Therefore, Hn

(
X,OX(−n− 1)

)
is a k-vector space

of dimension 1.
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2.2.3 More on Čech cohomology

2.2.3.1 An alternative definition

The aim of this section is to present an equivalent definition of cohomology as the
limit over all open coverings of the Čech cohomology groups.

Definition 2.2.18 (Alternating n-cochain)
Let X be a topological space and {Ui}i∈I an open covering of X. A n-cochain f in∏

(i0,...,in)∈In+1 F (Ui) is alternating if the two following conditions hold:

(i) For every permutation σ ∈ Sn+1, we have fi0,...,in = sgn(σ)fσ(i0),...,σ(in).

(ii) If there exist 0 ≤ k < l ≤ n such that ik = il, then fi0,...,in = 0.

Notation 2.2.19 (Group of alternating cochains)
The group of alternating n-cochains is denoted by C ′n(U ,F ).

Remark 2.2.20
We can define the coboundary maps as above:

dn : C ′n(U ,F ) −→ C ′n+1(U ,F )

s 7−→ dsf, (dns)i0,...,in+1 =
n+1∑
j=0

(−1)jsi0,...,îj ,...in+1

∣∣
Ui0,...,in+1

.

Then, one can check that an alternating is mapped to an alternating cochain and
that dn+1dn = 0.

Proposition 2.2.21
The two definitions

(
C•, d•

)
and

(
C ′•, d•

)
give rise to the same groups of cohomology

(up to isomorphism).

Proof. See Proposition 5.2.3 and Corollary 5.2.4 of [Liu06].

2.2.3.2 Refinement of open coverings

Now we want to relate Čech cohomology when we have different coverings. To do
this we need to introduce some more notions.

Definition 2.2.22 (Refinement of an open covering)
Let U = {Ui}i∈I and U ′ = {Vj}j∈J be two open covering of X. We say that U ′ is a
refinement of U if there exists a map λ : J −→ I such that Vj ⊂ Uλ(j) for all j ∈ J .

Proposition 2.2.23
Let U = {Ui}i∈I be an open covering of X and

(
U ′ = {Vj}j∈J , λ

)
a refinement of

U . This refinement gives rise to a morphism τn : Ȟn(U ,F ) −→ Ȟn(U ′,F ) for
every n ∈ N0.

Proof. For every n ∈ N0, we define

λn : Cn(U ,F ) −→ Cn(U ′,F )

f 7−→ λnf,
(
λnf

)
j0,...,jn

= fλ(j0),...,λ(jn)

∣∣
Vj0,...,jn

.

Then, it is easy to see that these maps commute with the coboundary maps. So we
get a morphism τn : Ȟn(U ,F ) −→ Ȟn(U ′,F ).
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Proposition 2.2.24
The map we get in the previous Proposition does not depend on the choice of λ.

Proof. See §21 (“Passage d’un recouvrement à un recouvrement plus fin”) of [Ser55].

We want to use this “refinement relation” to consider the direct limit on the class
of open covering. There are two problems: the class of open coverings is not a set
and the relation would like to define is not antisymmetric. We restrict ourselves to
the open coverings which contain each open set at most one time. The class of such
open coverings is a set and we can define the following relation on it:

U = {Ui}i∈I ≤ U ′ = {Vj}j∈J ⇔ U ′ is a refinement of U .

We solve the second problem as follows:

Proposition 2.2.25
Let Y bet a set and let ≤ be a binary reflexive and transitive relation on Y . Define
a equivalence on Y as follows:

a ∼ b⇔ a ≤ b and b ≤ a.

Then ≤ gives rise to a partial order on Y/∼.

Proof. It is clear that ∼ is an equivalence relation on Y . Furthermore, [a] ≤ [b] if
and only if a ≤ b is a well defined partial order on Y/∼.

Hence, with the identification U = U ′ if U ≤ U ′ and U ′ ≤ U we obtain a
poset which turns to be a filtered poset. Indeed, if U = {Ui}i∈I and U ′ = {Vj}j∈J
are open coverings of X, then U ∩ U ′ :=

{
Ui ∩ Uj}(i,j)∈I×J is a refinement of U

and U ′ (take the projections for the λ’s)1. We want to say that that we get that the
“refinement relation” gives rise to a direct system of isomorphism classes of abelian
groups. Thus, we need the following proposition.

Proposition 2.2.26
Let U and U ′ be two equivalent open coverings of X. Then the induced map
Ȟn(U ,F )→ Ȟn(U ′,F ) is an isomorphism.

Proof. We have the maps τ : Ȟn(U ,F ) → Ȟn(U ′,F ) and τ ′ : Ȟn(U ′,F ) →
Ȟn(U ,F ). Since the map ττ ′ does not depend on the choice of the map from I to
I, we can take the identity. Hence, ττ ′ = id. The symmetry implies τ ′τ = id, as
required.

Definition 2.2.27
Let n ∈ N0. With the same notation as above, we define

Ȟn(X,F ) = lim−→
U

Ȟn(U ,F ),

where U goes through the set of representatives of open coverings of X.

Theorem 2.2.28
Let X be a topological space and F a sheaf of abelian groups. Then Ȟ1(X,F ) ∼=
H1(X,F ).

Proof. See [Har77], III.4 (Lemma 4.4, Theorem 4.5, and Exercise 4.4).
1Since we use the definition of Čech cohomology with alternating cochains, we don’t have to care

about the order on I × J
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2.3 The Picard group and cohomology

The goal of this section is to show how we can realise the Picard group as a coho-
mology group. Namely we will show that H1

(
X,O∗X

) ∼= PicX, for a scheme X. We
follow exercise 5.3.2.7 of [Liu06].

Let X be a ringed space and let L be an invertible sheaf on X. Consider the open
covering U = {Ui}i∈I where L

∣∣
Ui

is a free OX
∣∣
Ui
-module of rank 1. Thus, we can

find for each i ∈ I an element ei ∈ L(Ui) such that {ei} is a basis for L(Ui). We de-
note by Φi : L

∣∣
Ui
−→ OX

∣∣
Ui

the isomorphism and use it to see that ei
∣∣
V
is a basis for

L(V ), as an OX(V )-module, for all V ⊂ Ui. Therefore, there exists for each i, j ∈ I
an element fij ∈ OX(Uij) such that ei

∣∣
Uij

= fij · ej
∣∣
Uij

. Moreover, the unicity of the
decomposition of the elements implies that fij ∈ OX(Uij)

∗. We see that fii = 1 and
the equalities ei

∣∣
Uij

= fij · ej
∣∣
Uij

and ej
∣∣
Uij

= fji · ei
∣∣
Uij

imply ei
∣∣
Uij

= fijfji · ej
∣∣
Uij

which means that fijfji = 1. Hence, we get an element f ∈ C ′1(U ,O∗X).

We consider (i, j, k) ∈ I3 and use the previous equality to get

ei
∣∣
Uijk

= fij
∣∣
Uijk
· ej
∣∣
Uijk

, ej
∣∣
Uijk

= fjk
∣∣
Uijk
· ek
∣∣
Uijk

, ei
∣∣
Uijk

= fik
∣∣
Uijk
· ek
∣∣
Uijk

and so
ej
∣∣
Uijk

= fjk
∣∣
Uijk
· fik

∣∣−1

Uijk
· fij

∣∣
Uijk
· ej
∣∣
Uijk

.

The unicity of the decomposition implies that 1 = fjk
∣∣
Uijk
· fik

∣∣−1

Uijk
· fij

∣∣
Uijk

which

means that f ∈ ker d1. Hence, we can consider the image Φ(f) in Ȟ1
(
U ,O∗X

)
. We

want to check that this image in Ȟ1
(
U ,O∗X

)
uniquely determined by L. Suppose

{e′i}i∈I is another collection of elements such that {e′i} is a basis for L(Ui). The ele-
ments ei and e′i must differ by an invertible element. Hence, there exists a collection
{gi}, with gi ∈ OX(Ui)

∗ such that e′i = giei. The collection {e′i} gives rise to {f ′ij}
such that e′i

∣∣
Uij

= f ′ij · e′j
∣∣
Uij

, as above. Using again the unicity of the decomposition

we see that fij = f ′ij · gj
∣∣
Uij
· gi
∣∣−1

Uij
. Hence, f and f ′ will have the same image in

Ȟ1
(
U ,O∗X

)
and we denote by φU (L) this image.

We denote by φ(L) the image of φU (L) in Ȟ1(X,O∗X) under the canonical mor-
phism Ȟ1(U ,O∗X) −→ Ȟ1(X,O∗X) (see Definition 2.2.27). We choose two trivializ-
ing coverings U = {Ui}i∈I and U ′ = {Vj}j∈J ofX and get the collections of elements
{ei}i∈I and {e′j}j∈J as above which give rise to the {fij}(ij)∈I2 and {f ′kl}(k,l)∈J2 . We
want to verify that the images of f and f ′ in Ȟ1

(
U ∩U ′,O∗X

)
are the same. This

is equivalent to see that the elements

(λf)(i,k),(j,l) = fi,j
∣∣
Uij∩Vkl

and (λ′f ′)(i,k),(j,l) = f ′k,l
∣∣
Uij∩Vkl

differ by an element of im d0. Proceeding as in the verification that φ(L) does not
depend on the choice of the {ei} (see above), one can check that this is the case.

Summary
So far, we associated to every invertible sheaf L on X an element φ(L) of Ȟ1(X,O∗X).
Note that this association gives rise to a map φ : Pic(X) −→ Ȟ1(X,O∗X). Indeed, if
L ∼= L′ we have the elements

{ei}, {e′i}, {fij}, {f ′ij}.



2.3. THE PICARD GROUP AND COHOMOLOGY 41

If we denote by ϕ the isomorphism between L and L′, we have ϕUij (ei)
∣∣
Uij

= fij ·
ϕUij (ej)

∣∣
Uij

. Since φ(L′) does not depend on the choice of the elements {e′i}, we can
take e′i = ϕUi(ei). Thus, φ(L) = φ(L′).

Proposition 2.3.1
Let X be a scheme. Then, the map φ : Pic(X) −→ Ȟ1(X,O∗X) is a homomorphism.

Proof. Let L,L′ ∈ Pic(X) be two invertible sheaves. First, we can choose an open
covering U = {Ui}i∈I such that for every i ∈ I:

L
∣∣
Ui
∼= OX

∣∣
Ui
, L′

∣∣
Ui
∼= OX

∣∣
Ui
, Ui is affine.

As above, we have elements

{ei}, {e′i}, {fij}, {f ′ij}.

We know that ei ⊗ e′i will be a basis for L(Ui)⊗ L′(Ui) over OX(Ui). Furthermore,
we have

(ei ⊗ e′i)
∣∣
Uij

= ei
∣∣
Uij
⊗ e′i

∣∣
Uij

= fijej
∣∣
Uij
⊗ f ′ije′j

∣∣
Uij

= fijf
′
ij · (ej ⊗ e′j)

∣∣
Uij
.

We have to find a basis for (L ⊗ L′)(Ui) over OX(Ui). The important fact is that
we have the isomorphism (L ⊗ L′)(Ui) = L(Ui) ⊗ L′(Ui). Indeed, if R is such that
OX
∣∣
Ui
∼= SpecR, we get

L(Ui)⊗OX(Ui) L
′(Ui) ∼= OX

∣∣
Ui

(Ui)⊗OX |Ui (Ui) OX
∣∣
Ui

(Ui)

∼= R⊗R R ∼= R

∼= Γ
(
R̃,SpecR

)
= Γ

(
R̃⊗R R,SpecR

)
∼= Γ

(
R̃⊗R̃ R̃,SpecR

)
∼= Γ

(
R̃⊗R R,SpecR

)
∼=
(
L
∣∣
Ui
⊗OX |Ui L

′∣∣
Ui

)
(Ui) ∼=

(
L ⊗OX L

′
)∣∣
Ui

(Ui)

∼= (L ⊗OX L
′)(Ui).

Therefore, we can take ei ⊗ e′i as a basis for (L ⊗ L′)(Ui) and the “corresponding f”
is fijf ′ij . This shows that φ is indeed a homomorphism of groups.

Proposition 2.3.2
Let L be an invertible sheaf on OX . Then, φ(L) = 1 if and only if L is free of rank 1.

Proof. Suppose that φ(L) = 1. Since the image of L does not depend on the choice
of the open covering U , we can assume that f = 1 in Ȟ1(U ,O∗X). Therefore, there
exists g ∈ C0(U ,O∗X) such that f = d0g. This implies that

(
giei
)∣∣
Uij

=
(
gjej

)∣∣
Uij

for all i, j ∈ I. Hence, the elements eifi glue to an element h ∈ L(X) which can be
chosen as a generator. This implies that L is free of rank 1.

Suppose that L is free. This implies that L(X) admits a basis of the form {e}
for some f ∈ OX(X). We choose the open covering {X} and get the element f = 1
which means that f has image 1 in Ȟ1(X,O∗X), as required.

Theorem 2.3.3
Let X be a scheme. Then, we have Pic(X) ∼= H1(X,O∗X).
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Proof. We have a homomorphism φ : Pic(X) −→ Ȟ1(X,O∗X) and the previous
proposition implies that φ is injective. So all we need to do is establish surjectivity:
let
[
U , f

]
∈ Ȟ1(X,O∗X). Set Li = OX

∣∣
Ui

and use the multiplication by the fij to get

isomorphisms Li
∣∣
Uij

ϕij

∼=
//Lj
∣∣
Uij

. Since f is an alternating cochain, we have ϕii = id.

Since f ∈ ker d1, we have ϕik = ϕjk ◦ ϕij . Therefore, we can glue the Li to get an
invertible sheaf L. We take ei ∈ L(Ui) as the image of 1 under the isomorphism
ψi : OX

∣∣
Ui

(Ui) −→ L(Ui). We have the following commutative diagramm:

Li
∣∣
Uij

ϕij // Li
∣∣
Uij

ψj
−1

��

OX
∣∣
Uij

OX
∣∣
Uij

ψj
−1

$$
L
∣∣
Uij

ψi

88

ψi
::

id
// L
∣∣
Uij

The fact that ψj−1 ϕij ψj = id comes from the glueing. Then, looking at the images
of ei

∣∣
Uij

, we have ei
∣∣
Uij

= fij · ej
∣∣
Uij

. Hence, φ(L) =
[
U , f

]
and we have shown

that φ is surjective. Thus, we have Pic(X) ∼= Ȟ1(X,O∗X). We finish using Theorem
2.2.28.
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Appendix

A.1 Some results of algebra

Proposition A.1.1
Let R be a ring, S a multiplicative subset of R and {Mi}i∈I a family of R-modules.
Then S−1

(⊕
iMi

) ∼= ⊕i

(
S−1Mi

)
.

Proof. It is easy to see that S−1
(⊕

iMi

)
satisfy the universal property of the direct

sum.

A.1.1 Graded modules

Notation A.1.2
Let R be a graded ring. We write R+ for the ideal

⊕
d∈ZRd.

Definition A.1.3 (Graded module)
A graded module R-module M is a R-module M such that:

• R =
⊕

n∈N0
Rn is a graded ring;

• M =
⊕

n∈N0
Mn (each Mn is a subgroup of M);

• RnMm ⊂Mn+m.

Definition A.1.4 (Twisted graded module)
Let M be a graded R-module. For n ∈ Z, we define the graded R-module M(n) by
M(n)d = Md+n.

Remark A.1.5
If R is a graded ring (thus a graded module over itself), then R(n) is a graded
module over R (and not R(n)). This is because of this operation that we take a
decomposition of M over Z and not over N.

Definition A.1.6 (Degree)
Let M be a graded R-module, T be a multiplicative subset of R and m

r ∈ T
−1R. The

degree, ∂mr , of
m
r is ∂m− ∂r.

Notation A.1.7
Let M be a graded R-module and p be a prime ideal of R. Define the multiplicative
T as the set of all homogeneous elements which are not in p. Then we denote by
M(p) the set of elements of T−1R which are of degree 0.

43
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Definition A.1.8 (Tensor product of graded modules)
Let M and N be two graded R-modules. We can put a structure of graded module on
M ⊗R N as follows:(

M ⊗R N
)
k

=
{∑

i

mi ⊗ ni : ∂mi + ∂ni = k,mi and ni homogeneous
}
.

Proposition A.1.9
Let M be a graded R-module and n ∈ N, Then M ⊗R R(n) ∼= M(n), as graded
R-modules.

A.2 Projective schemes

In this section, R denote a graded ring.

Notation A.2.1
We write ProjR for the set of homogeneous prime ideals of R which do not contain
all of R+.

Notation A.2.2
For an homogeneous ideal I of R, we write V(I) for{

p ∈ ProjR : I ⊂ p
}
.

Because V(IJ) = V(I) ∪ V(J) and V
(∑

j Ij
)

=
⋂
j V(Ij), we have the following

definition.

Definition A.2.3 (Zariski topology on ProjR)
The topology on ProjR which is obtained by taking sets of the form V(I) as closed
sets is the Zariski topology on ProjR.

Let p ∈ ProjR and Tp be the multiplicative subset of all homogeneous elements
which are not in p.

Definition A.2.4 (Degree)
Let a

q ∈ T
−1
p R. The degree, ∂ aq , of

a
q is ∂a− ∂q.

Notation A.2.5
We denote by R(p) the set of elements of T−1

p R which are of degree 0.

Notation A.2.6
Let f be an homogeneous element of R+. We denote by R(f) the set of elements of
Rf which are of degree 0.

Remark A.2.7
Consider n ∈ N, R(n) and f ∈ R+. Then

R(n)(f) =

{
r

fm
∈ Rf : ∂

(
r

fm

)
= n

}
.

Now, we are ready to define a sheaf of rings on ProjS. Consider an open set U
of ProjR and set O(U) as the set of functions s : U −→

∐
p∈U R(p) which satisfy the

following properties:

(i) s(q) ∈ R(p), for all q ∈ U .
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(ii) For each p ∈ U , there exists an open neighbourhood V of p contained in U and
homogeneous elements r, p ∈ R of the same degree such that p /∈ q for all q ∈ V
and s(q) = r

p .

Notation A.2.8
Let f ∈ R+ be an homogeneous element. We set D+(f) = {p ∈ ProjR : f /∈ p}.

Definition A.2.9
For any graded ring R, we define (ProjR,O) as above.

With these choices, we have analogous properties as the affine case:

Proposition A.2.10
Let R be a graded ring. We have the following:

(i) For any p ∈ ProjR, we have Op
∼= R(p), as local rings.

(ii) For any homogeneous element f ∈ R+, we have O
(
D+(f)

) ∼= R(f).

(iii) As f ∈ R+ is going through all homogeneous element of R+, the sets D+(f)
cover ProjR.

(iv)
(
D+(f),O

∣∣
D+(f)

) ∼= SpecR(f), as locally ringed space.

(v) ProjR is a scheme.

Proof. See II.2 of [Har77].
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Table of notations

Ab(X) Category of sheaves on a topological space X

CaCl(X) Group of Cartier divisor of a scheme X modulo principal divisor

CaDiv(X) Group of Cartier divisor of a scheme X

Cl(X) Divisor class group of a scheme X

Div(X) Group of Weil divisor of a scheme

M od(OX) Category of OX -modules

N Set of postive integers {1, 2, . . .}

N0 Set of non-negative integers {0, 1, 2, . . .}

Pic(X) Picard group of X
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Alternating cochain, 38

Cartier divisor, 23
Category with enough injectives, 31
Čech cohomology group, 33
Cochain complex, 29
Coherent sheaf, 14
Cohomology functor, 32
Cohomology object, 29
Cokernel of a morphism of OX -modules,

4
Complex, 29

Degree of a divisor, 21
Deleted injective resolution, 31
Derived functor, 31
Direct image, 10
Divisor

Cartier divisor, 23
class group, 21
degree of a divisor, 21
prime divisor, 17
Weil divisor, 18

Enough injective, 31
Exact sequence of OX -modules, 8

Field of functions, 18
Free OX -module, 9

Generic point, 18
Graded module, 43
Group

divisor class group, 21
of alternating cochains, 38
of principal divisors, 21

Image of a morphism of OX -modules, 4
Injective

object, 31
resolution, 31

Inverse image, 10
Invertible sheaf, 9

Kernel of a morphism of OX -modules, 4

Linearly equivalent Cartier divisors, 23
Locally factorial scheme, 24
Locally free OX -module, 9

Morphism of OX -modules, 4
Morphism of complexes, 29

OX -module, 3
coherent OX -module, 14
inverse image of an OX -module, 10
invertible OX -module, 9
quasi-coherent OX -module, 14
rank of locally free OX -module, 9

OX -modules
exact sequence of OX -modules, 8
morphism of OX -modules, 4
quotient of OX -modules, 7
tensor product of OX -modules, 8

OX -submodule, 7

Picard group, 26
Pole, 20
Presheaf of modules, 3
Prime divisor, 17
Principal

Cartier divisor, 23
divisor, 21

Quasi-coherent sheaf, 14
Quotient of OX -modules, 7

Rank of locally free OX -module, 9
Refinement of an open covering, 38
Regular element, 22
Resolution (deleted resolution), 31
Right derived functor, 31

Sheaf
associated to a module, 12
hom, 8
of ideals, 9
of total quotient rings, 22
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Sheaf of modules, 3
Subsheaf of OX -modules, 7

Tensor product, 8
Total quotient rings, 22
Twisting sheaf of Serre, 15

Weil divisor, 18

Zariski topology on ProjR, 44
Zero, 20
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